|
|
A313217
|
|
Coordination sequence Gal.6.382.4 where Gal.u.t.v denotes the coordination sequence for a vertex of type v in tiling number t in the Galebach list of u-uniform tilings.
|
|
0
|
|
|
1, 4, 9, 15, 19, 25, 32, 35, 40, 46, 50, 54, 62, 67, 69, 76, 81, 84, 91, 99, 101, 104, 112, 115, 119, 128, 134, 135, 140, 148, 150, 155, 164, 168, 169, 176, 184, 185, 191, 200, 202, 204, 213, 219, 219, 227, 235, 236, 241, 250
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Note that there may be other vertices in the Galebach list of u-uniform tilings with u <= 6 that have this same coordination sequence. See the Galebach link for the complete list of A-numbers for all these tilings.
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 2*a(n-1) - 3*a(n-2) + 4*a(n-3) - 5*a(n-4) + 5*a(n-5) - 4*a(n-6) + 4*a(n-7) - 4*a(n-8) + 4*a(n-9) - 4*a(n-10) + 5*a(n-11) - 5*a(n-12) + 4*a(n-13) - 3*a(n-14) + 2*a(n-15) - a(n-16) for n > 19.
G.f.: (-x^19 + x^18 - x^17 + 2*x^16 + x^15 + 6*x^14 + 2*x^13 + 10*x^12 + 6*x^11 + 13*x^10 + 9*x^9 + 10*x^8 + 12*x^7 + 8*x^6 + 11*x^5 + 5*x^4 + 5*x^3 + 4*x^2 + 2*x + 1)/((x - 1)^2*(x^2 - x + 1)*(x^2 + x + 1)*(x^4 - x^3 + x^2 - x + 1)*(x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)). (End)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|