login
Number of distinct values of multinomial coefficients M(n;lambda) where lambda ranges over all partitions of n into distinct parts.
3

%I #17 Dec 07 2020 13:59:32

%S 1,1,1,2,2,3,4,5,6,8,10,12,15,18,22,25,32,35,44,53,61,72,81,98,114,

%T 130,147,176,200,229,257,291,342,387,442,501,573,642,714,807,907,1037,

%U 1159,1293,1458,1624,1811,2024,2246,2505,2785,3114,3449,3795,4213,4660

%N Number of distinct values of multinomial coefficients M(n;lambda) where lambda ranges over all partitions of n into distinct parts.

%C Differs from A000009 first at n = 15: a(15) = 25 < 27 = A000009(15). There are two repeated multinomial coefficients for n = 15: 1365 = M(15;11,4) = M(15;12,2,1) and 30030 = M(15;9,5,1) = M(15;10,3,2).

%H Alois P. Heinz, <a href="/A309999/b309999.txt">Table of n, a(n) for n = 0..125</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Multinomial_theorem#Multinomial_coefficients">Multinomial coefficients</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_(number_theory)">Partition (number theory)</a>

%p g:= proc(n, i) option remember; `if`(i*(i+1)/2<n, {}, `if`(n=0, {1},

%p {map(x->binomial(n, i)*x, g(n-i, min(n-i, i-1)))[], g(n, i-1)[]}))

%p end:

%p a:= n-> nops(g(n$2)):

%p seq(a(n), n=0..55);

%t g[n_, i_] := g[n, i] = If[i(i+1)/2 < n, {}, If[n == 0, {1}, Union[ Binomial[n, i] #& /@ g[n - i, Min[n - i, i - 1]], g[n, i - 1]]]];

%t a[n_] := Length[g[n, n]];

%t a /@ Range[0, 55] (* _Jean-François Alcover_, Dec 07 2020, after _Alois P. Heinz_ *)

%Y Cf. A000009, A070289.

%K nonn

%O 0,4

%A _Alois P. Heinz_, Aug 26 2019