login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k for which rank of the elliptic curve y^2 = x^3 - 432*k^2 is 0.
6

%I #20 Jan 24 2023 12:35:23

%S 1,2,3,4,5,8,10,11,14,16,18,21,23,24,25,27,29,32,36,38,39,40,41,44,45,

%T 46,47,52,54,55,57,59,60,64,66,73,74,76,77,80,81,82,83,88,93,95,99,

%U 100,101,102,108,109,111,112,113,116,118,119,121,122,125,128,129,131,135,137

%N Numbers k for which rank of the elliptic curve y^2 = x^3 - 432*k^2 is 0.

%H Charles R Greathouse IV, <a href="/A309960/b309960.txt">Table of n, a(n) for n = 1..10000</a>

%F A060838(a(n)) = 0.

%o (PARI) for(k=1, 200, if(ellanalyticrank(ellinit([0, 0, 0, 0, -432*k^2]))[1]==0, print1(k", ")))

%o (PARI) is(n, f=factor(n))=my(c=prod(i=1, #f~, f[i, 1]^(f[i, 2]\3)), r=n/c^3, E, eri, mwr, ar); if(r<6, return(1)); E=ellinit([0, 16*r^2]); eri=ellrankinit(E); mwr=ellrank(eri); if(mwr[1], return(0)); ar=ellanalyticrank(E)[1]; if(ar<2, return(!ar)); for(effort=1, 99, mwr=ellrank(eri, effort); if(mwr[1]>0, return(0), mwr[2]<1, return(1))); "unknown (0 under BSD conjecture)" \\ _Charles R Greathouse IV_, Jan 24 2023

%Y Complement of A159843 \ A000578.

%Y Cf. A060748, A060838, A309961 (rank 1), A309962 (rank 2), A309963 (rank 3), A309964 (rank 4).

%K nonn

%O 1,2

%A _Seiichi Manyama_, Aug 25 2019