login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) is the number of compositions of n with k parts and differences all equal to 1, 0, or -1.
4

%I #17 Aug 24 2019 02:26:01

%S 1,1,1,1,2,1,1,1,3,1,1,2,3,4,1,1,1,3,6,5,1,1,2,3,6,10,6,1,1,1,3,7,12,

%T 15,7,1,1,2,3,6,14,22,21,8,1,1,1,3,8,15,27,37,28,9,1,1,2,3,6,16,32,50,

%U 58,36,10,1,1,1,3,7,16,35,63,88,86,45,11,1

%N Triangle read by rows: T(n,k) is the number of compositions of n with k parts and differences all equal to 1, 0, or -1.

%F T(n, 1) = T(n, n) = 1.

%F T(n, 2) = (3 - (-1)^n)/2 for n > 1.

%F T(n, 3) = 3 for n > 3.

%F T(n, n - 1) = binomial(n-1, 1) = n - 1.

%F T(n, n - 2) = binomial(n-2, 2).

%e Triangle begins:

%e 1;

%e 1, 1;

%e 1, 2, 1;

%e 1, 1, 3, 1;

%e 1, 2, 3, 4, 1;

%e 1, 1, 3, 6, 5, 1;

%e 1, 2, 3, 6, 10, 6, 1;

%e 1, 1, 3, 7, 12, 15, 7, 1;

%e 1, 2, 3, 6, 14, 22, 21, 8, 1;

%e 1, 1, 3, 8, 15, 27, 37, 28, 9, 1;

%e 1, 2, 3, 6, 16, 32, 50, 58, 36, 10, 1;

%e 1, 1, 3, 7, 16, 35, 63, 88, 86, 45, 11, 1;

%e 1, 2, 3, 6, 16, 38, 74, 118, 147, 122, 55, 12, 1;

%e 1, 1, 3, 8, 16, 37, 83, 148, 212, 234, 167, 66, 13, 1;

%e 1, 2, 3, 6, 17, 40, 88, 174, 282, 366, 357, 222, 78, 14, 1;

%e ...

%e For n = 6 there are a total of 17 compositions:

%e k = 1: (6)

%e k = 2: (33)

%e k = 3: (123), (222), (321)

%e k = 4: (1122), (1212), (1221), (2112), (2121), (2211)

%e k = 5: (11112), (11121), (11211), (12111), (21111)

%e k = 6: (111111)

%o (PARI)

%o step(R,n)={matrix(n, n, i, j, if(i>j, if(j>1, R[i-j, j-1]) + R[i-j, j] + if(j+1<=n, R[i-j, j+1])) )}

%o T(n)={my(v=vector(n), R=matid(n), m=0); while(R, m++; v[m]+=vecsum(R[n,]); R=step(R,n)); v}

%o for(n=1, 12, print(T(n)))

%Y Row sums are A034297.

%Y Cf. A309931, A309937, A309938.

%K nonn,tabl

%O 1,5

%A _Andrew Howroyd_, Aug 23 2019