login
A309908
a(n) is 2^n represented in bijective base-9 numeration.
2
1, 2, 4, 8, 17, 35, 71, 152, 314, 628, 1357, 2725, 5551, 12212, 24424, 48848, 98797, 218715, 438531, 878162, 1867334, 3845668, 7792447, 16694895, 34499911, 69121922, 149243944, 299487988, 619987187, 1342185385, 2684381781, 5478773672, 11968657454, 24148425918
OFFSET
0,2
COMMENTS
Differs from A001357 first at n = 16: a(16) = 98797 < 108807 = A001357(16).
LINKS
R. R. Forslund, A logical alternative to the existing positional number system, Southwest Journal of Pure and Applied Mathematics, Vol. 1, 1995, 27-29.
Eric Weisstein's World of Mathematics, Zerofree
FORMULA
a(n) = A052382(2^n) = A052382(A000079(n)).
EXAMPLE
a(10) = 1357_bij9 = 9*(9*(9*1+3)+5)+7 = 1024 = 2^10.
a(16) = 98797_bij9 = 9*(9*(9*(9*9+8)+7)+9)+7 = 65536 = 2^16.
MAPLE
b:= proc(n) local d, l, m; m:= n; l:= "";
while m>0 do d:= irem(m, 9, 'm');
if d=0 then d:=9; m:= m-1 fi; l:= d, l
od; parse(cat(l))
end:
a:= n-> b(2^n):
seq(a(n), n=0..33);
KEYWORD
nonn,base
AUTHOR
Alois P. Heinz, Aug 21 2019
STATUS
approved