%I
%S 0,1,8,204,890,890,51311,286609,3580781,20875184,182289612,747240110,
%T 8656547082,8656547082,105545557489,783768630338,15026453160167,
%U 114725244868970,1045247300817798,9187315290370043,20586210475743186,20586210475743186
%N Approximation of the 7adic integer exp(7) up to 7^n.
%C In padic field, the exponential function exp(x) is defined as Sum_{k>=0} x^k/k!. When extended to a function over the metric completion of the padic field, exp(x) has radius of convergence p^(1/(p1)) (i.e., exp(x) converges for x such that x_p < p^(1/(p1)), where x_p is the padic metric). As a result, for odd primes p, exp(p) is welldefined in padic field, and exp(4) is well defined in 2adic field.
%C a(n) is the multiplicative inverse of A309905(n) modulo 7^n.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Padic_number">padic number</a>
%o (PARI) a(n) = lift(exp(7 + O(7^n)))
%Y Cf. A309905.
%Y The 7adic expansion of exp(7) is given by A309987.
%Y Approximations of exp(p) in padic field: A309900 (p=3), A309902 (p=5), this sequence (p=7).
%K nonn
%O 0,3
%A _Jianing Song_, Aug 21 2019
