login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Lexicographically earliest sequence of positive integers without triples in weakly increasing arithmetic progression.
11

%I #65 Sep 12 2023 12:02:09

%S 1,1,2,1,1,2,2,4,4,1,1,2,1,1,2,2,4,4,2,4,4,5,5,8,5,5,9,1,1,2,1,1,2,2,

%T 4,4,1,1,2,1,1,2,2,4,4,2,4,4,5,5,8,5,5,9,2,4,4,5,5,10,5,5,10,10,11,13,

%U 10,11,10,11,13,10,10,12,13,10,13,11,12,20,11,1,1,2,1,1,2,2,4,4,1,1,2,1,1,2,2,4,4,2

%N Lexicographically earliest sequence of positive integers without triples in weakly increasing arithmetic progression.

%C Formal definition: lexicographically earliest sequence of positive integers a(n) such that for any i > 0, there is no n > 0 such that 2a(n+i) = a(n) + a(n+2i) AND a(n) <= a(n+i) <= a(n+2i).

%C Sequence suggested by _Richard Stanley_ as a variant of A229037. They differ from the 55th term. The numbers n for which a(n) = 1 are given by A003278, or equally by A005836 (_Richard Stanley_).

%C The sequence defined by c(n) = 1 if a(n) = 1 and otherwise c(n) = 0 is A039966 (although with a different offset). - _N. J. A. Sloane_, Dec 01 2019

%C Pleasant to listen to (button above) with Instrument no. 13: Marimba (and for better listening, save and convert to MP3).

%H Sébastien Palcoux, <a href="/A309890/b309890.txt">Table of n, a(n) for n = 1..100000</a>

%H Sébastien Palcoux, <a href="https://mathoverflow.net/q/338415">On the first sequence without triple in arithmetic progression</a> (version: 2019-08-21), second part, MathOverflow

%H Sébastien Palcoux, <a href="/A309890/a309890.txt">Table of n, a(n) for n = 1..1000000</a>

%H Sébastien Palcoux, <a href="/A309890/a309890.png">Density plot of the first 1000000 terms</a>

%o (SageMath)

%o # %attach SAGE/ThreeFree.spyx

%o from sage.all import *

%o cpdef ThreeFree(int n):

%o cdef int i,j,k,s,Li,Lj

%o cdef list L,Lb

%o cdef set b

%o L=[1,1]

%o for k in range(2,n):

%o b=set()

%o for i in range(k):

%o if 2*((i+k)/2)==i+k:

%o j=(i+k)/2

%o Li,Lj=L[i],L[j]

%o s=2*Lj-Li

%o if s>0 and Li<=Lj:

%o b.add(s)

%o if 1 not in b:

%o L.append(1)

%o else:

%o Lb=list(b)

%o Lb.sort()

%o for t in Lb:

%o if t+1 not in b:

%o L.append(t+1)

%o break

%o return L

%o (Python)

%o from itertools import count, islice

%o def A309890_gen(): # generator of terms

%o blist = []

%o for n in count(0):

%o i, j, b = 1, 1, set()

%o while n-(i<<1) >= 0:

%o x, y = blist[n-2*i], blist[n-i]

%o z = (y<<1)-x

%o if x<=y<=z:

%o b.add(z)

%o while j in b:

%o j += 1

%o i += 1

%o blist.append(j)

%o yield j

%o A309890_list = list(islice(A309890_gen(),30)) # _Chai Wah Wu_, Sep 12 2023

%Y Cf. A003278, A005836, A039966, A229037.

%K nonn,look,easy,hear

%O 1,3

%A _Sébastien Palcoux_, Aug 21 2019