login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the smallest number k such that the difference between the next prime greater than k and k equals n.
1

%I #12 Aug 23 2019 14:38:12

%S 1,0,8,7,24,23,90,89,118,117,116,115,114,113,526,525,524,523,888,887,

%T 1130,1129,1338,1337,1336,1335,1334,1333,1332,1331,1330,1329,1328,

%U 1327,9552,9551,15690,15689,15688,15687,15686,15685,15684,15683,19616,19615,19614,19613,19612,19611

%N a(n) is the smallest number k such that the difference between the next prime greater than k and k equals n.

%H Robert Israel, <a href="/A309877/b309877.txt">Table of n, a(n) for n = 1..282</a>

%F a(n) = min {k : A013632(k) = n}.

%e +------+------+-----+

%e | a(n) | next | gap |

%e | | prime| |

%e +------+------+-----+

%e | 1 | 2 | 1 |

%e | 0 | 2 | 2 |

%e | 8 | 11 | 3 |

%e | 7 | 11 | 4 |

%e | 24 | 29 | 5 |

%e | 23 | 29 | 6 |

%e | 90 | 97 | 7 |

%e | 89 | 97 | 8 |

%e +------+------+-----+

%p N:= 100:

%p A:= Vector(N,-1):

%p count:= 0: lastp:= 0:

%p while count < N do

%p p:= nextprime(lastp);

%p newvals:= select(t -> A[t]=-1, [$1..min(p-lastp,N)]);

%p count:= count+nops(newvals);

%p for k in newvals do A[k]:= p-k od;

%p lastp:= p;

%p od:

%p convert(A,list); # _Robert Israel_, Aug 23 2019

%t Table[SelectFirst[Range[0, 20000], NextPrime[#] - # == n &], {n, 1, 50}]

%o (PARI) a(n) = my(k=0); while(nextprime(k+1) - k != n, k++); k; \\ _Michel Marcus_, Aug 21 2019

%Y Cf. A000101, A000230, A007918, A007920, A013632, A051652, A075403, A077019, A151800.

%K nonn

%O 1,3

%A _Ilya Gutkovskiy_, Aug 21 2019