login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes of the form 2*p^3+1 where p is also prime.
2

%I #16 Dec 09 2024 15:07:40

%S 17,251,2663,48779,410759,715823,2450087,6615899,13935743,15290747,

%T 23394167,38930219,160125983,219804479,236741543,1258845587,

%U 1666475243,2116179719,2308641299,3604970627,3991233959,4283401139,6109873703,8207369603,8487319319,9264815927

%N Primes of the form 2*p^3+1 where p is also prime.

%C All terms == 5 (mod 6).

%H Robert Israel, <a href="/A309856/b309856.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = 1+2*A309857(n)^3.

%p f:= proc(n) if isprime(n) and isprime(2*n^3+1) then return 2*n^3+1 fi end proc:

%p map(f, [2,seq(i,i=5..10000,6)]);# _Robert Israel_, Aug 22 2019

%t pp = Join[{2}, Select[Range[5, 10000, 6], PrimeQ[#] && PrimeQ[2#^3 + 1]&]];

%t 2 pp^3 + 1 (* _Jean-François Alcover_, Jul 31 2020 *)

%t Select[2*Prime[Range[300]]^3+1,PrimeQ] (* _Harvey P. Dale_, Dec 09 2024 *)

%Y Cf. A309857.

%Y Subsequence of A214175 and of A201107.

%K nonn

%O 1,1

%A _R. J. Mathar_, Aug 20 2019