login
A309849
Digits of the multiplicative inverse of A309766.
1
1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1
OFFSET
-2
FORMULA
By definition, (Sum_{i=-2..n} a(i)*2^(i+2)) * (Sum_{i=0..floor((n+2)/4)} (-1)^i*4^(2*i)/(2*i+1)) == 1 (mod 2^(n+3)).
EXAMPLE
arctan(4) = ...0100000001010001001111101100100101000100, so 1/arctan(4) = ...00010111001111001111011011010110101100.01.
PROG
(PARI) a(n) = lift(Mod(sum(i=0, (n+2)/4, (-1)^i*4^(2*i)/(2*i+1)), 2^(n+3))^(-1))\2^(n+2)
CROSSREFS
Sequence in context: A088592 A188189 A029692 * A071906 A104107 A120532
KEYWORD
nonn,base
AUTHOR
Jianing Song, Aug 20 2019
STATUS
approved