Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #37 Dec 13 2021 14:31:37
%S 1,256,27556,2775556,277755556,27777555556,2777775555556,
%T 277777755555556,27777777555555556,2777777775555555556,
%U 277777777755555555556,27777777777555555555556,2777777777775555555555556,277777777777755555555555556,27777777777777555555555555556
%N a(n) is the square of the number consisting of one 1 and n 6's: (166...6)^2.
%C All terms are zeroless (element of A052382).
%H Seiichi Manyama, <a href="/A309827/b309827.txt">Table of n, a(n) for n = 0..500</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (111,-1110,1000).
%F a(n) = A246057(n)^2 = ((5*10^n-2)/3)^2.
%F a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3).
%F G.f.: (1+145*x+250*x^2)/((1-x)*(1-10*x)*(1-100*x)).
%t LinearRecurrence[{111,-1110,1000},{1,256,27556},20] (* _Harvey P. Dale_, Dec 13 2021 *)
%o (PARI) {a(n) = ((5*10^n-2)/3)^2}
%o (PARI) N=20; x='x+O('x^N); Vec((1+145*x+250*x^2)/((1-x)*(1-10*x)*(1-100*x)))
%Y ((k*10^n+3-k)/3)^2: A102807 (k=1), A109344 (k=2), A098608 (k=3), A309907 (k=4), this sequence (k=5).
%Y Cf. A052382, A246057.
%K nonn,base
%O 0,2
%A _Seiichi Manyama_, Aug 23 2019