%I #13 Aug 24 2019 14:21:20
%S 1,8,8,0,4,8,4,1,9,9,2,7,6,6,8,8,6,9,3,6,4,4,0,1,1,5,8,7,2,4,6,0,9,4,
%T 0,7,1,6,3,9,4,2,5,3,3,9,9,5,1,1,4,6,3,0,7,6,8,7,1,4,8,8,2,7,8,0,3,7,
%U 3,8,0,2,9,5,1,4,4,5,3,5,8,3,1,8,7,9,8,8,7,8,6,5,2,7,4,5,6,2,2,7
%N Digits of the 10-adic integer (2345678987654321/(1-10^16))^(1/9).
%C x = ...906427851104463968866729914840881.
%C x^9 = ...123456789876543212345678987654321.
%H Seiichi Manyama, <a href="/A309826/b309826.txt">Table of n, a(n) for n = 0..10000</a>
%e 1^9 == 1 (mod 10).
%e 81^9 == 21 (mod 10^2).
%e 881^9 == 321 (mod 10^3).
%e 881^9 == 4321 (mod 10^4).
%e 40881^9 == 54321 (mod 10^5).
%e 840881^9 == 654321 (mod 10^6).
%e 4840881^9 == 7654321 (mod 10^7).
%e 14840881^9 == 87654321 (mod 10^8).
%e 914840881^9 == 987654321 (mod 10^9).
%e 9914840881^9 == 8987654321 (mod 10^10).
%e 29914840881^9 == 78987654321 (mod 10^11).
%e 729914840881^9 == 678987654321 (mod 10^12).
%e 6729914840881^9 == 5678987654321 (mod 10^13).
%e 66729914840881^9 == 45678987654321 (mod 10^14).
%e 866729914840881^9 == 345678987654321 (mod 10^15).
%e 8866729914840881^9 == 2345678987654321 (mod 10^16).
%e 68866729914840881^9 == 12345678987654321 (mod 10^17).
%o (PARI) N=100; M=2345678987654321/(1-10^16); Vecrev(digits(lift(chinese(Mod((M+O(2^N))^(1/9), 2^N), Mod((M+O(5^N))^(1/9), 5^N)))), N)
%Y Digits of the 10-adic integer (2345678987654321/(1-10^16))^(1/k): A309824 (k=3), A309825 (k=7), this sequence (k=9).
%Y Cf. A309820.
%K nonn,base
%O 0,2
%A _Seiichi Manyama_, Aug 18 2019