login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Base conversion sequence: a(1) = 1; a(n) is the concatenation of all the previous terms, evaluated in base n-1, written in base n.
2

%I #24 Dec 07 2021 07:24:07

%S 1,1,10,213,133130,50044104412,1456053604226211530303,

%T 1355606752437672176235012441560305430335663,

%U 211028537470000781652623227715306164580285678106041347266088244412145807188883237767

%N Base conversion sequence: a(1) = 1; a(n) is the concatenation of all the previous terms, evaluated in base n-1, written in base n.

%C This will only work for n <= 10. To get a sequence that is defined for all n, it will be necessary to replace a(n) by a list of its "digits". So the result will be a triangle: 1 / 1 / 1,0 / 2,1,3 / ..., in which row n is a list of the digits written in base n. This should be an additional sequence with a cross-reference to this one. - _N. J. A. Sloane_, Sep 21 2019

%C See A349918 for the corresponding triangle. - _Rémy Sigrist_, Dec 05 2021

%H Rémy Sigrist, <a href="/A309737/b309737.txt">Table of n, a(n) for n = 1..10</a>

%H Rémy Sigrist, <a href="/A309737/a309737.gp.txt">PARI program for A309737</a>

%F a(1) = 1; a(n) is the concatenation of all the previous terms, evaluated in base n-1, written in base n.

%e For a(3) the previous terms are {1,1}. Evaluating the concatenation of those terms in base n-1 = 2 gives 11_2 = 3; converting that to base n = 3 gives 10_3, so a(3) = 10.

%e n=4: 1110_3 = 39_10 = 213_4, so a(4) = 213.

%o (PARI) See Links section.

%o (Python)

%o from sympy.ntheory.digits import digits

%o def fromdigits(d, b):

%o n = 0

%o for di in d: n *= b; n += di

%o return n

%o def afull():

%o alst, diglst = [1], [1]

%o for n in range(2, 11):

%o andigs = digits(fromdigits(diglst, n-1), n)[1:]

%o alst.append(int("".join(map(str, andigs))))

%o diglst.extend(andigs)

%o return alst

%o print(afull()) # _Michael S. Branicky_, Dec 05 2021

%Y Cf. A349918.

%K nonn,base,full,fini

%O 1,3

%A _Moshe Levy_, Aug 14 2019

%E More terms from _Rémy Sigrist_, Dec 05 2021