login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. A(x) satisfies: A(x) = A(x^2) / (1 - 2*x).
1

%I #7 Aug 14 2019 22:18:57

%S 1,2,6,12,30,60,132,264,558,1116,2292,4584,9300,18600,37464,74928,

%T 150414,300828,602772,1205544,2413380,4826760,9658104,19316208,

%U 38641716,77283432,154585464,309170928,618379320,1236758640,2473592208,4947184416,9894519246,19789038492,39578377812

%N G.f. A(x) satisfies: A(x) = A(x^2) / (1 - 2*x).

%F G.f.: Product_{k>=0} 1/(1 - 2*x^(2^k)).

%t nmax = 34; A[_] = 1; Do[A[x_] = A[x^2]/(1 - 2 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

%t nmax = 34; CoefficientList[Series[Product[1/(1 - 2 x^(2^k)), {k, 0, Floor[Log[2, nmax]] + 1}], {x, 0, nmax}], x]

%o (PARI) seq(n)=Vec(1/prod(k=0, logint(n,2), 1 - 2*x^(2^k) + O(x*x^n))) \\ _Andrew Howroyd_, Aug 14 2019

%Y Cf. A001316, A018819, A171238, A308986.

%K nonn

%O 0,2

%A _Ilya Gutkovskiy_, Aug 14 2019