login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Convolve Fibonacci, Pell and bronze Fibonacci numbers.
1

%I #34 May 08 2024 11:33:21

%S 0,0,0,1,6,28,114,432,1566,5517,19068,65044,219852,738316,2468028,

%T 8222805,27330858,90685224,300521622,994991716,3292117698,10887332473,

%U 35992718136,118958691528,393093822744,1298783453112,4290755845176,14174217683209,46821054068430,154655837126740

%N Convolve Fibonacci, Pell and bronze Fibonacci numbers.

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-8,-6,8,6,1).

%F G.f.: -x^3/( (x^2+2*x-1) * (x^2+3*x-1) * (x^2+x-1) ) = A006190(x) * A000045(x) * A000129(x).

%F Conjecture: 2*a(n) = A117936(n,3).

%F 2*a(n) = A006190(n) + A000045(n) - 2*A000129(n). - _R. J. Mathar_, Mar 10 2023, typo corrected by Xiaoyuan Wang and _Greg Dresden_, May 08 2024

%p -x^3/( (x^2+2*x-1)*(x^2+3*x-1)*(x^2+x-1) ) ;

%p taylor(%,x=0,30) ;

%p gfun[seriestolist](%) ;

%Y Cf. A006684, A006190 (bronze Fibonacci numbers), A117936.

%K nonn,easy

%O 0,5

%A _R. J. Mathar_, Aug 16 2019