Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Sep 03 2019 23:03:16
%S 0,0,0,1,1,1,1,4,7,10,10,15,20,25,30,42,49,56,63,79,95,111,120,140,
%T 160,180,200,233,257,281,305,344,383,422,450,495,540,585,630,694,745,
%U 796,847,919,991,1063,1120,1200,1280,1360,1440,1545,1633,1721,1809
%N Sum of the odd parts appearing among the second largest parts of the partitions of n into 3 parts.
%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%H <a href="/index/Rec#order_18">Index entries for linear recurrences with constant coefficients</a>, signature (2,-3,4,-3,2,1,-4,6,-8,6,-4,1,2,-3,4,-3,2,-1).
%F a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} i * (i mod 2).
%F From _Colin Barker_, Aug 23 2019: (Start)
%F G.f.: x^3*(1 + x + x^2 + x^3 + x^4)*(1 - 2*x + 3*x^2 - 4*x^3 + 6*x^4 - 4*x^5 + 3*x^6 - 2*x^7 + x^8) / ((1 - x)^4*(1 + x)^2*(1 - x + x^2)^2*(1 + x^2)^2*(1 + x + x^2)^2).
%F a(n) = 2*a(n-1) - 3*a(n-2) + 4*a(n-3) - 3*a(n-4) + 2*a(n-5) + a(n-6) - 4*a(n-7) + 6*a(n-8) - 8*a(n-9) + 6*a(n-10) - 4*a(n-11) + a(n-12) + 2*a(n-13) - 3*a(n-14) + 4*a(n-15) - 3*a(n-16) + 2*a(n-17) - a(n-18) for n>17.
%F (End)
%e Figure 1: The partitions of n into 3 parts for n = 3, 4, ...
%e 1+1+8
%e 1+1+7 1+2+7
%e 1+2+6 1+3+6
%e 1+1+6 1+3+5 1+4+5
%e 1+1+5 1+2+5 1+4+4 2+2+6
%e 1+1+4 1+2+4 1+3+4 2+2+5 2+3+5
%e 1+1+3 1+2+3 1+3+3 2+2+4 2+3+4 2+4+4
%e 1+1+1 1+1+2 1+2+2 2+2+2 2+2+3 2+3+3 3+3+3 3+3+4 ...
%e -----------------------------------------------------------------------
%e n | 3 4 5 6 7 8 9 10 ...
%e -----------------------------------------------------------------------
%e a(n) | 1 1 1 1 4 7 10 10 ...
%e -----------------------------------------------------------------------
%t Table[Sum[Sum[i * Mod[i, 2], {i, j, Floor[(n - j)/2]}], {j, Floor[n/3]}], {n, 0, 80}]
%t LinearRecurrence[{2, -3, 4, -3, 2, 1, -4, 6, -8, 6, -4, 1, 2, -3, 4, -3, 2, -1}, {0, 0, 0, 1, 1, 1, 1, 4, 7, 10, 10, 15, 20, 25, 30, 42, 49, 56}, 80]
%Y Cf. A026923, A026927, A309683, A309684, A309685, A309686, A309687, A309689, A309690, A309692, A309694.
%K nonn,easy
%O 0,8
%A _Wesley Ivan Hurt_, Aug 12 2019