login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of odd parts in the partitions of n into 7 parts.
1

%I #7 Feb 28 2020 16:04:00

%S 0,0,0,0,0,0,0,7,6,12,16,27,34,53,66,97,122,168,208,281,342,443,536,

%T 678,812,1008,1196,1462,1722,2072,2420,2885,3344,3937,4538,5297,6064,

%U 7022,7994,9190,10412,11886,13400,15215,17074,19274,21544,24204,26946,30137

%N Number of odd parts in the partitions of n into 7 parts.

%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>

%F a(n) = Sum_{o=1..floor(n/7)} Sum_{m=o..floor((n-o)/6)} Sum_{l=m..floor((n-m-o)/5)} Sum_{k=l..floor((n-l-m-o)/4)} Sum_{j=k..floor((n-k-l-m-o)/3} Sum_{i=j..floor((n-j-k-l-m-o)/2)} (o mod 2) + (m mod 2) + (l mod 2) + (k mod 2) + (j mod 2) + (i mod 2) + ((n-i-j-k-l-m-o) mod 2).

%t Table[Sum[Sum[Sum[Sum[Sum[Sum[Mod[i, 2] + Mod[j, 2] + Mod[k, 2] + Mod[l, 2] + Mod[m, 2] + Mod[o, 2] + Mod[n - i - j - k - l - m - o, 2], {i, j, Floor[(n - j - k - l - m - o)/2]}], {j, k, Floor[(n - k - l - m - o)/3]}], {k, l, Floor[(n - l - m - o)/4]}], {l, m, Floor[(n - m - o)/5]}], {m, o, Floor[(n - o)/6]}], {o, Floor[n/7]}], {n, 0, 50}]

%t Table[Count[Flatten[IntegerPartitions[n,{7}]],_?OddQ],{n,0,50}] (* _Harvey P. Dale_, Feb 28 2020 *)

%K nonn

%O 0,8

%A _Wesley Ivan Hurt_, Aug 10 2019