login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Digits of the 10-adic integer (-13/9)^(1/3).
3

%I #23 Aug 12 2019 10:17:25

%S 7,0,3,0,3,3,7,4,3,3,4,2,5,1,7,3,8,4,7,6,4,5,0,4,8,7,8,4,6,3,0,2,8,3,

%T 2,4,4,6,2,3,5,0,4,6,8,2,0,1,9,5,5,4,2,8,7,8,6,6,5,0,8,9,8,2,3,8,0,1,

%U 9,5,8,6,2,3,2,8,7,7,9,8,8,4,5,0,7,4,7,1,0,2,4,9,0,8,5,4,5,0,2,6

%N Digits of the 10-adic integer (-13/9)^(1/3).

%H Seiichi Manyama, <a href="/A309608/b309608.txt">Table of n, a(n) for n = 0..10000</a>

%F Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 7, b(n) = b(n-1) + 3 * (9 * b(n-1)^3 + 13) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n.

%e 7^3 == 3 (mod 10).

%e 7^3 == 43 (mod 10^2).

%e 307^3 == 443 (mod 10^3).

%e 307^3 == 4443 (mod 10^4).

%e 30307^3 == 44443 (mod 10^5).

%e 330307^3 == 444443 (mod 10^6).

%o (PARI) N=100; Vecrev(digits(lift(chinese(Mod((-13/9+O(2^N))^(1/3), 2^N), Mod((-13/9+O(5^N))^(1/3), 5^N)))), N)

%o (Ruby)

%o def A309608(n)

%o ary = [7]

%o a = 7

%o n.times{|i|

%o b = (a + 3 * (9 * a ** 3 + 13)) % (10 ** (i + 2))

%o ary << (b - a) / (10 ** (i + 1))

%o a = b

%o }

%o ary

%o end

%o p A309608(100)

%Y Cf. A173770, A309600, A309613.

%K nonn,base

%O 0,1

%A _Seiichi Manyama_, Aug 10 2019