login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Smallest members of prime triples, the sum of which results in a perfect square.
1

%I #45 Aug 13 2019 13:17:27

%S 13,37,277,613,12157,14557,23053,55213,81013,203317,331333,393853,

%T 824773,867253,1008037,2038573,3026053,3322213,5198197,5497237,

%U 5793517,5984053,9107173,17246413,20850757,20871853,21327997,25363573,25678573,27258613,29134597,30153037,33313333

%N Smallest members of prime triples, the sum of which results in a perfect square.

%C A prime triple is a set of three prime numbers of the form (p, p+2, p+6) or (p, p+4, p+6).

%C The smallest prime of the first form of these triples is not part of this sequence because p + (p+2) + (p+6) = 3p +8 and a number of this form is never a square.

%C PROOF:

%C From _Bernard Schott_, Aug 09 2019: (Start)

%C If a == 0 (mod 3) ==> a^2 == 0 (mod 3),

%C If a == 1 (mod 3) ==> a^2 == 1 (mod 3),

%C If a == 2 (mod 3) ==> a^2 == 4 == 1 (mod 3).

%C Hence, a square is always == 0 or == 1 (mod 3)

%C As p + (p+2) + (p+6) = 3*p+8, and 3*p+8 == 2 (mod 3), there is no prime triple of the form (p, p+2, p+6) whose sum 3*p + 8 can be a square. (End)

%H Robert Israel, <a href="/A309594/b309594.txt">Table of n, a(n) for n = 1..10000</a>

%e Let p = 277 (prime), q = p+4 = 281 (prime), r = p+6 = 283 (prime). We now have a prime triple. p+q+r = 841 = 29^2, a perfect square.

%p Res:= NULL: count:= 0:

%p for k from 0 while count < 100 do

%p for x in [6*k+1,6*k+5] do

%p p:= (x^2-10)/3;

%p if isprime(p) and isprime(p+4) and isprime(p+6) then

%p count:= count+1;

%p Res:= Res, p

%p fi

%p od od:

%p Res; # _Robert Israel_, Aug 13 2019

%t ok[p_] := If[AllTrue[{p, p+4, p+6}, PrimeQ], Sow@p]; Reap[Do[ok[3 y^2 + 2 y - 3]; ok[3 y^2 + 4 y - 2], {y, 4000}]][[2, 1]] (* _Giovanni Resta_, Aug 09 2019 *)

%o (PARI) issq(p) = issquare(3*p+10);

%o istriple(p) = isprime(p+4) && isprime(p+6);

%o isok(p) = isprime(p) && istriple(p) && issq(p); \\ _Michel Marcus_, Aug 10 2019

%Y Cf. A130621.

%Y Intersection of A022005 and A206279.

%K nonn

%O 1,1

%A _Philip Mizzi_, Aug 09 2019

%E More terms from _Michel Marcus_, Aug 09 2019