%I #22 Jun 17 2024 10:50:10
%S 7,8,11,14,15,16,17,19,20,21,22,24,28,30,31,32,33,34,35,38,39,40,42,
%T 44,45,47,48,49,51,52,55,56,57,59,60,62,63,64,66,67,68,70,71,72,75,76,
%U 77,78,80,83,84,85,87,88,90,91,93,94,95,96,98,99,100,102,104
%N Numbers k with 2 zeros in a fundamental period of A006190 mod k.
%C Numbers k such that A322906(k) = 2.
%C This sequence contains all numbers k such that 4 divides A322907(k). As a consequence, this sequence contains all numbers congruent to 7, 11, 15, 19, 31, 47 modulo 52.
%C This sequence contains all odd numbers k such that 8 divides A175182(k).
%H Jianing Song, <a href="/A309592/b309592.txt">Table of n, a(n) for n = 1..10000</a>
%o (PARI) for(k=1, 100, if(A322906(k)==2, print1(k, ", ")))
%Y Cf. A175182, A322907.
%Y Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.
%Y | m=1 | m=2 | m=3
%Y -----------------------------+----------+---------+----------
%Y The sequence {x(n)} | A000045 | A000129 | A006190
%Y The sequence {w(k)} | A001176 | A214027 | A322906
%Y Primes p such that w(p) = 1 | A112860* | A309580 | A309586
%Y Primes p such that w(p) = 2 | A053027 | A309581 | A309587
%Y Primes p such that w(p) = 4 | A053028 | A261580 | A309588
%Y Numbers k such that w(k) = 1 | A053031 | A309583 | A309591
%Y Numbers k such that w(k) = 2 | A053030 | A309584 | this seq
%Y Numbers k such that w(k) = 4 | A053029 | A309585 | A309593
%Y * and also A053032 U {2}
%K nonn
%O 1,1
%A _Jianing Song_, Aug 10 2019