Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Jun 17 2024 10:50:10
%S 7,8,11,14,15,16,17,19,20,21,22,24,28,30,31,32,33,34,35,38,39,40,42,
%T 44,45,47,48,49,51,52,55,56,57,59,60,62,63,64,66,67,68,70,71,72,75,76,
%U 77,78,80,83,84,85,87,88,90,91,93,94,95,96,98,99,100,102,104
%N Numbers k with 2 zeros in a fundamental period of A006190 mod k.
%C Numbers k such that A322906(k) = 2.
%C This sequence contains all numbers k such that 4 divides A322907(k). As a consequence, this sequence contains all numbers congruent to 7, 11, 15, 19, 31, 47 modulo 52.
%C This sequence contains all odd numbers k such that 8 divides A175182(k).
%H Jianing Song, <a href="/A309592/b309592.txt">Table of n, a(n) for n = 1..10000</a>
%o (PARI) for(k=1, 100, if(A322906(k)==2, print1(k, ", ")))
%Y Cf. A175182, A322907.
%Y Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.
%Y | m=1 | m=2 | m=3
%Y -----------------------------+----------+---------+----------
%Y The sequence {x(n)} | A000045 | A000129 | A006190
%Y The sequence {w(k)} | A001176 | A214027 | A322906
%Y Primes p such that w(p) = 1 | A112860* | A309580 | A309586
%Y Primes p such that w(p) = 2 | A053027 | A309581 | A309587
%Y Primes p such that w(p) = 4 | A053028 | A261580 | A309588
%Y Numbers k such that w(k) = 1 | A053031 | A309583 | A309591
%Y Numbers k such that w(k) = 2 | A053030 | A309584 | this seq
%Y Numbers k such that w(k) = 4 | A053029 | A309585 | A309593
%Y * and also A053032 U {2}
%K nonn
%O 1,1
%A _Jianing Song_, Aug 10 2019