login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes p with 2 zeros in a fundamental period of A000129 mod p.
19

%I #41 Jun 25 2024 08:30:29

%S 3,11,17,19,43,59,67,73,83,89,97,107,113,131,139,163,179,193,211,227,

%T 233,241,251,257,281,283,307,331,337,347,379,401,419,433,443,449,467,

%U 491,499,523,547,563,571,577,587,601,617,619,641,643,659,673,683,691

%N Primes p with 2 zeros in a fundamental period of A000129 mod p.

%C Primes p such that A214027(p) = 2.

%C For p > 2, p is in this sequence if and only if 8 divides A175181(p), and if and only if 4 divides A214028(p). For a proof of the equivalence between A214027(p) = 2 and 4 dividing A214028(p), see Section 2 of my link below.

%C This sequence contains all primes congruent to 3 modulo 8. This corresponds to case (2) for k = 6 in the Conclusion of Section 1 of my link below.

%C Conjecturely, this sequence has density 5/12 in the primes. [Comment rewritten by _Jianing Song_, Jun 16 2024 and Jun 25 2024]

%H Jianing Song, <a href="/A309581/b309581.txt">Table of n, a(n) for n = 1..1600</a>

%H Jianing Song, <a href="/A053027/a053027.pdf">Lucas sequences and entry point modulo p</a>

%o (PARI) forprime(p=2, 700, if(A214027(p)==2, print1(p, ", ")))

%Y Cf. A175181, A214028.

%Y Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.

%Y | m=1 | m=2 | m=3

%Y -----------------------------+----------+----------+---------

%Y The sequence {x(n)} | A000045 | A000129 | A006190

%Y The sequence {w(k)} | A001176 | A214027 | A322906

%Y Primes p such that w(p) = 1 | A112860* | A309580 | A309586

%Y Primes p such that w(p) = 2 | A053027 | this seq | A309587

%Y Primes p such that w(p) = 4 | A053028 | A261580 | A309588

%Y Numbers k such that w(k) = 1 | A053031 | A309583 | A309591

%Y Numbers k such that w(k) = 2 | A053030 | A309584 | A309592

%Y Numbers k such that w(k) = 4 | A053029 | A309585 | A309593

%Y * and also A053032 U {2}

%K nonn

%O 1,1

%A _Jianing Song_, Aug 10 2019