login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A309517 Sum of the odd parts in the partitions of n into 4 parts. 0

%I

%S 0,0,0,0,4,3,8,9,22,26,50,59,100,114,168,197,284,329,438,504,660,748,

%T 946,1072,1322,1488,1794,2008,2408,2671,3130,3465,4024,4434,5100,5595,

%U 6384,6966,7866,8565,9630,10449,11648,12600,13992,15080,16652,17912,19684

%N Sum of the odd parts in the partitions of n into 4 parts.

%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>

%F a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} (i * (i mod 2) + j * (j mod 2) + k * (k mod 2) + (n-i-j-k) * ((n-i-j-k) mod 2)).

%e Figure 1: The partitions of n into 4 parts for n = 8, 9, ..

%e 1+1+1+9

%e 1+1+2+8

%e 1+1+3+7

%e 1+1+4+6

%e 1+1+1+8 1+1+5+5

%e 1+1+2+7 1+2+2+7

%e 1+1+1+7 1+1+3+6 1+2+3+6

%e 1+1+2+6 1+1+4+5 1+2+4+5

%e 1+1+3+5 1+2+2+6 1+3+3+5

%e 1+1+1+6 1+1+4+4 1+2+3+5 1+3+4+4

%e 1+1+1+5 1+1+2+5 1+2+2+5 1+2+4+4 2+2+2+6

%e 1+1+2+4 1+1+3+4 1+2+3+4 1+3+3+4 2+2+3+5

%e 1+1+3+3 1+2+2+4 1+3+3+3 2+2+2+5 2+2+4+4

%e 1+2+2+3 1+2+3+3 2+2+2+4 2+2+3+4 2+3+3+4

%e 2+2+2+2 2+2+2+3 2+2+3+3 2+3+3+3 3+3+3+3

%e --------------------------------------------------------------------------

%e n | 8 9 10 11 12 ...

%e --------------------------------------------------------------------------

%e a(n) | 22 26 50 59 100 ...

%e --------------------------------------------------------------------------

%e - _Wesley Ivan Hurt_, Sep 08 2019

%t Table[Sum[Sum[Sum[(i * Mod[i, 2] + j * Mod[j, 2] + k * Mod[k, 2] + (n - i - j - k) * Mod[n - i - j - k, 2]), {i, j, Floor[(n - j - k)/2]}], {j, k, Floor[(n - k)/3]}], {k, Floor[n/4]}], {n, 0, 100}]

%K nonn

%O 0,5

%A _Wesley Ivan Hurt_, Aug 05 2019

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 4 05:42 EST 2021. Contains 341779 sequences. (Running on oeis4.)