%I #32 May 23 2024 03:55:48
%S 1,1,1,1,3,1,5,15,4,2,2,1,13,5,1,6,2,13,1,2,1,3,9,5,10,5,1,5,2,9,6,8,
%T 4,2,7,3,1,1,10,11,2,7,2,1,4,5,13,4,4,3,1,3,7,2,4,6,3,7,5,2,20,6,4,2,
%U 6,1,2,1,4,3,4,3,5,5,5,16,2,14,3,3,2,2,5,5
%N Least number k > 0 such that 4*p^2*k^2 + 1 is prime, where p = prime(n) is the n-th prime.
%C Gagola calculated the first 669 terms of this sequence (for all the primes p < 5000) using an HP 9830 in 1981. She found that the largest value of k was only 45 and that 84% of the values of k were less than or equal to 10.
%C The Generalized Dickson Conjecture implies that the sequence contains each positive integer infinitely many times. - _Robert Israel_, Aug 05 2019
%H Jason Yuen, <a href="/A309498/b309498.txt">Table of n, a(n) for n = 1..10000</a>
%H Gloria Gagola, <a href="https://www.jstor.org/stable/2689383">Progress on primes</a>, News and Letters, Mathematics Magazine, Vol. 54, No. 1 (1981), p. 43.
%e a(1) = 1 since 4*1^2*prime(1)^2 + 1 = 4*1*2^2 + 1 = 17 is prime.
%p f:= proc(n) local q,k;
%p q:= 4*ithprime(n)^2;
%p for k from 1 do
%p if isprime(q*k^2+1) then return k fi
%p od
%p end proc:
%p map(f, [$1..100]); # _Robert Israel_, Aug 05 2019
%t a[n_] := Module[{k = 1, p = Prime[n]}, While[!PrimeQ[4 * k^2 * p^2 + 1], k++]; k]; Array[a, 100]
%o (PARI) a(n) = my(k=1, p=prime(n)); while (!isprime(4*p^2*k^2 + 1), k++); k; \\ _Michel Marcus_, Aug 05 2019
%Y Cf. A002496, A005574, A035092, A052291.
%K nonn,easy
%O 1,5
%A _Amiram Eldar_, Aug 05 2019