Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #39 Sep 08 2022 08:46:21
%S 101,103,107,109,307,401,409,503,509,601,607,701,709,809,907,10103,
%T 10301,10303,10501,10601,10607,10709,10903,10909,20101,20107,20201,
%U 20407,20507,20509,20707,20807,20809,20903,30103,30109,30203,30307,30403,30509,30703,30707,30803,30809
%N Primes whose decimal expansion is of the form d_1+0+d_2+0+d_3+0+...+0+d_k where d_i are digits with 1 <= d_i <= 9, k > 1 and + stands for concatenation.
%C The terms of this sequence have necessarily an odd number >= 3 of digits.
%C There is only one term whose digits > 0 are all equal: 101.
%C The only cyclops primes (A134809) of this sequence are the first 15 terms from 101 to 907.
%C The first palindromes of this sequence are 101, 10301, 10501, 10601, 30103, 30203, 30403, 30703, 30803, ...
%C Intersection with A309101 = {503, 10103, 10303, 10903, ...}.
%e 103 is the smallest term with two distinct digits > 0.
%e 10607 is the smallest term with three distinct digits > 0.
%t aQ[n_] := PrimeQ[n] && OddQ[(m = Length[(d = IntegerDigits[n])])] && Flatten@Position[d, _?(# == 0 &)] == Range[2, m, 2]; Select[Range[100, 31000], aQ] (* _Amiram Eldar_, Aug 04 2019 *)
%o (Magma) sol:=[]; m:=1; for p in PrimesInInterval(101,50000) do v:=Reverse(Intseq(p)); test:=0; for u in [1..#v-1] do if u mod 2 eq 0 and v[u] eq 0 and v[u+1] ne 0 then test:=test+1; end if; end for; if test eq (#v-1)/2 then sol[m]:=p; m:=m+1; end if; end for; sol; // _Marius A. Burtea_, Aug 04 2019
%o (PARI) eva(n) = subst(Pol(n), x, 10)
%o f(n) = my(d=digits(n)); eva(vector(2*#d-1, k, if (k%2, d[1+k\2]))) \\ from _Michel Marcus_
%o terms(n) = my(i=0); for(k=10, oo, if(i>=n, break); if(vecmin(digits(k)) > 0, my(iz=f(k)); if(ispseudoprime(iz), print1(iz, ", "); i++)))
%o /* Print initial 40 terms as follows: */
%o terms(40) \\ _Felix Fröhlich_, Aug 08 2019
%Y Cf. A000040, A002385, A134809, A309101.
%Y Subsequence of A059168 (undulating primes).
%K nonn,base
%O 1,1
%A _Bernard Schott_, Aug 04 2019