login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of the squarefree parts of the partitions of n into 3 parts.
8

%I #15 Apr 09 2022 15:11:26

%S 0,0,0,3,4,10,14,24,32,51,56,77,95,128,146,198,225,280,318,384,416,

%T 524,549,672,726,861,915,1063,1143,1292,1382,1551,1661,1867,1966,2211,

%U 2355,2618,2762,3094,3263,3602,3798,4185,4409,4869,5078,5524,5794,6264

%N Sum of the squarefree parts of the partitions of n into 3 parts.

%H David A. Corneth, <a href="/A309478/b309478.txt">Table of n, a(n) for n = 0..9999</a>

%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>

%F a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} (i * mu(i)^2 + j * mu(j)^2 + (n-i-j) * mu(n-i-j)^2), where mu is the Möbius function (A008683).

%e Figure 1: The partitions of n into 3 parts for n = 3, 4, ...

%e 1+1+8

%e 1+1+7 1+2+7

%e 1+2+6 1+3+6

%e 1+1+6 1+3+5 1+4+5

%e 1+1+5 1+2+5 1+4+4 2+2+6

%e 1+1+4 1+2+4 1+3+4 2+2+5 2+3+5

%e 1+1+3 1+2+3 1+3+3 2+2+4 2+3+4 2+4+4

%e 1+1+1 1+1+2 1+2+2 2+2+2 2+2+3 2+3+3 3+3+3 3+3+4 ...

%e -----------------------------------------------------------------------

%e n | 3 4 5 6 7 8 9 10 ...

%e -----------------------------------------------------------------------

%e a(n) | 3 4 10 14 24 32 51 56 ...

%e -----------------------------------------------------------------------

%t Table[Sum[Sum[i*MoebiusMu[i]^2 + j*MoebiusMu[j]^2 + (n - i - j) MoebiusMu[n - i - j]^2, {i, j, Floor[(n - j)/2]}], {j, Floor[n/3]}], {n, 0, 50}]

%t Table[Total[Select[Flatten[IntegerPartitions[n,{3}]],SquareFreeQ]],{n,0,50}] (* _Harvey P. Dale_, Apr 09 2022 *)

%Y Cf. A008683, A309455, A309478, A309479, A309480, A309481, A309482, A309484, A309485, A309486.

%K nonn

%O 0,4

%A _Wesley Ivan Hurt_, Aug 04 2019