login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of the prime parts in the partitions of n into 4 parts.
7

%I #17 Jan 07 2022 09:02:26

%S 0,0,0,0,0,2,7,11,28,31,56,68,101,117,165,187,267,307,385,445,563,621,

%T 780,878,1044,1181,1405,1545,1828,2019,2298,2535,2901,3141,3588,3915,

%U 4371,4768,5311,5711,6393,6880,7552,8146,8957,9543,10493,11218,12194

%N Sum of the prime parts in the partitions of n into 4 parts.

%H David A. Corneth, <a href="/A309465/b309465.txt">Table of n, a(n) for n = 0..9999</a>

%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>

%F a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} (i * c(i) + j * c(j) + k * c(k) + (n-i-j-k) * c(n-i-j-k)), where c is the prime characteristic (A010051).

%e Figure 1: The partitions of n into 4 parts for n = 8, 9, ..

%e 1+1+1+9

%e 1+1+2+8

%e 1+1+3+7

%e 1+1+4+6

%e 1+1+1+8 1+1+5+5

%e 1+1+2+7 1+2+2+7

%e 1+1+1+7 1+1+3+6 1+2+3+6

%e 1+1+2+6 1+1+4+5 1+2+4+5

%e 1+1+3+5 1+2+2+6 1+3+3+5

%e 1+1+1+6 1+1+4+4 1+2+3+5 1+3+4+4

%e 1+1+1+5 1+1+2+5 1+2+2+5 1+2+4+4 2+2+2+6

%e 1+1+2+4 1+1+3+4 1+2+3+4 1+3+3+4 2+2+3+5

%e 1+1+3+3 1+2+2+4 1+3+3+3 2+2+2+5 2+2+4+4

%e 1+2+2+3 1+2+3+3 2+2+2+4 2+2+3+4 2+3+3+4

%e 2+2+2+2 2+2+2+3 2+2+3+3 2+3+3+3 3+3+3+3

%e --------------------------------------------------------------------------

%e n | 8 9 10 11 12 ...

%e --------------------------------------------------------------------------

%e a(n) | 28 31 56 68 101 ...

%e --------------------------------------------------------------------------

%e - _Wesley Ivan Hurt_, Sep 08 2019

%t Table[Sum[Sum[Sum[i (PrimePi[i] - PrimePi[i - 1]) + j (PrimePi[j] - PrimePi[j - 1]) + k (PrimePi[k] - PrimePi[k - 1]) + (n - i - j - k) (PrimePi[n - i - j - k] - PrimePi[n - i - j - k - 1]), {i, j, Floor[(n - j - k)/2]}], {j, k, Floor[(n - k)/3]}], {k, Floor[n/4]}], {n, 0, 80}]

%Y Cf. A010051, A309465, A309466, A309467, A309468, A309469, A309470, A309471.

%K nonn

%O 0,6

%A _Wesley Ivan Hurt_, Aug 03 2019