login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficients in 7-adic expansion of 2^(1/5).
11

%I #13 Aug 04 2019 01:38:29

%S 4,6,1,3,6,4,3,5,4,6,5,4,0,0,6,4,3,4,5,6,2,2,2,0,6,5,5,0,3,1,1,4,0,4,

%T 6,2,0,6,0,3,6,3,2,5,4,6,4,0,5,5,2,1,4,3,4,1,0,1,1,6,0,4,1,6,0,4,5,1,

%U 1,6,2,5,2,3,0,6,1,3,6,4,0,6,2,6,4,2,0,1,6,3,6,5,1,2,4,3,3,0,4,6,2

%N Coefficients in 7-adic expansion of 2^(1/5).

%H Robert Israel, <a href="/A309445/b309445.txt">Table of n, a(n) for n = 0..10000</a>

%p op([1,3], padic:-rootp(x^5-2,7,101)); # _Robert Israel_, Aug 04 2019

%o (Ruby)

%o require 'OpenSSL'

%o def f_a(ary, a)

%o (0..ary.size - 1).inject(0){|s, i| s + ary[i] * a ** i}

%o end

%o def df(ary)

%o (1..ary.size - 1).map{|i| i * ary[i]}

%o end

%o def A(c_ary, k, m, n)

%o x = OpenSSL::BN.new((-f_a(df(c_ary), k)).to_s).mod_inverse(m).to_i % m

%o f_ary = c_ary.map{|i| x * i}

%o f_ary[1] += 1

%o d_ary = []

%o ary = [0]

%o a, mod = k, m

%o (n + 1).times{|i|

%o b = a % mod

%o d_ary << (b - ary[-1]) / m ** i

%o ary << b

%o a = f_a(f_ary, b)

%o mod *= m

%o }

%o d_ary

%o end

%o def A309445(n)

%o A([-2, 0, 0, 0, 0, 1], 4, 7, n)

%o end

%o p A309445(100)

%o (PARI) Vecrev(digits(truncate((2+O(7^100))^(1/5)), 7))

%Y Cf. A309450.

%Y Digits of p-adic integers:

%Y A290566 (5-adic, 2^(1/3));

%Y A309446 (7-adic, 3^(1/5));

%Y A309447 (7-adic, 4^(1/5));

%Y A309448 (7-adic, 5^(1/5));

%Y A309449 (7-adic, 6^(1/5)).

%K nonn,base

%O 0,1

%A _Seiichi Manyama_, Aug 03 2019