login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of different numbers that are formed by permuting digits of n!.
1

%I #15 Jul 31 2019 20:40:42

%S 1,1,1,1,2,6,6,12,60,360,1260,10080,15120,25200,1247400,32432400,

%T 12612600,6810804000,7264857600,185253868800,1005663859200,

%U 1117404288000,4839757322400,93504111468768000,37401644587507200,160787493266400000,13023786954578400000

%N Number of different numbers that are formed by permuting digits of n!.

%C a(0) = 1 because 0! = 1 has one permutation (1).

%C a(4) = 2 because 4! = 24 has two permutations (24, 42).

%C a(5) = 6 because 5! = 120 has 6 permutations (012, 021, 102, 120, 201, 210).

%H Alois P. Heinz, <a href="/A309415/b309415.txt">Table of n, a(n) for n = 0..460</a>

%p a:= n-> (l-> combinat[multinomial](add(i, i=l), l[])

%p )([coeffs(add(x^i, i=convert(n!, base, 10)))]):

%p seq(a(n), n=0..30); # _Alois P. Heinz_, Jul 30 2019

%t a[n_] := Block[{w = IntegerDigits[n!]}, Length[w]! / Times @@ ((Last /@ Tally[w])!)]; Array[a, 26, 0] (* _Giovanni Resta_, Jul 30 2019 *)

%o (Haskell)

%o import Data.List (permutations, nub)

%o factorial n = product [1..n]

%o a309415 n = length $ nub $ permutations $ show $ factorial n

%o map a309415 [0..]

%Y Cf. A000142, A047726.

%K nonn,base

%O 0,5

%A _Hauke Löffler_, Jul 30 2019

%E More terms from _Giovanni Resta_, Jul 30 2019