login
A309313
Number of simple labeled graphs on 2n nodes with exactly n connected components that are trees or cycles.
2
1, 1, 19, 540, 23597, 1381695, 101682724, 9016296289, 935625630797, 111226656560877, 14903545528332565, 2222230881719482634, 364942065096639623872, 65448490334085989020670, 12726830901257817750060165, 2667188536603107740647377075, 599286881811684624273478547325
OFFSET
0,3
COMMENTS
(a(n)/n!)^(1/n) tends to 15.1198... - Vaclav Kotesovec, Aug 06 2019
LINKS
FORMULA
a(n) = A215861(2n,n).
MAPLE
b:= proc(n, k) option remember; `if`(k<0 or k>n, 0,
`if`(n=0, 1, add(binomial(n-1, i)*b(n-1-i, k-1)*
`if`(i<2, 1, i!/2 +(i+1)^(i-1)), i=0..n-k)))
end:
a:= n-> b(2*n, n):
seq(a(n), n=0..20);
MATHEMATICA
b[n_, k_] := b[n, k] = If[k < 0 || k > n, 0,
If[n == 0, 1, Sum[Binomial[n - 1, i]*b[n - 1 - i, k - 1]*
If[i<2, 1, i!/2 + (i+1)^(i-1)], {i, 0, n-k}]]];
a[n_] := b[2n, n];
a /@ Range[0, 20] (* Jean-François Alcover, Dec 29 2020, after Alois P. Heinz *)
CROSSREFS
Cf. A215861.
Sequence in context: A196512 A027406 A053116 * A158211 A278184 A035278
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 22 2019
STATUS
approved