login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Langton's ant on a truncated trihexagonal tiling: number of black cells after n moves of the ant when starting on a dodecagon.
3

%I #14 Jul 23 2019 08:50:36

%S 0,1,2,3,4,5,6,5,6,7,8,9,10,9,10,11,12,13,14,13,14,15,16,17,18,17,18,

%T 19,20,21,22,21,22,21,22,23,24,25,24,25,26,25,26,27,28,29,30,31,32,31,

%U 32,33,34,35,36,35,36,37,38,39,40,39,40,41,42,43,44,43,44,45,46,47,48,47,46

%N Langton's ant on a truncated trihexagonal tiling: number of black cells after n moves of the ant when starting on a dodecagon.

%C On a white dodecagon, turn 30 degrees right, flip the color of the tile, then move forward one unit.

%C On a black dodecagon, turn 30 degrees left, flip the color of the tile, then move forward one unit.

%C On a white hexagon, turn 60 degrees right, flip the color of the tile, then move forward one unit.

%C On a black hexagon, turn 60 degrees left, flip the color of the tile, then move forward one unit.

%C On a white square, turn 90 degrees right, flip the color of the tile, then move forward one unit.

%C On a black square, turn 90 degrees left, flip the color of the tile, then move forward one unit.

%H Felix Fröhlich, <a href="/A309279/a309279.pdf">Illustration of iterations 0-50 of the ant</a>, 2019.

%H Sean A. Irvine, <a href="https://github.com/archmageirvine/joeis/blob/master/src/irvine/oeis/a309/A309279.java">Java program</a> (github)

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Langton%27s_ant">Langton's ant</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Truncated_trihexagonal_tiling">Truncated trihexagonal tiling</a>

%e See illustrations in Fröhlich, 2019.

%Y Cf. A255938, A269757, A308590, A308937, A308973, A326167, A326352, A309064, A309166, A309241.

%K nonn

%O 0,3

%A _Felix Fröhlich_, Jul 20 2019

%E More terms from _Sean A. Irvine_, Jul 22 2019