OFFSET
0,4
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (1,-2,2,-1,1).
FORMULA
a(4t)=0, a(4t+1)=4t+1, a(4t+2)=-1, a(4t+3)=-(4t+4).
From Colin Barker, Aug 13 2019: (Start)
G.f.: x*(1 - 2*x - x^2) / ((1 - x)*(1 + x^2)^2).
a(n) = a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) + a(n-5) for n>4.
a(n) = (-2 + (1+i)*(-i)^n + (1-i)*i^n + 2*i*((-i)^n-i^n)*n) / 4 where i=sqrt(-1).
(End)
E.g.f.: (1/2)*((1+2*x)*cos(x)-cosh(x)+sin(x)-sinh(x)). - Stefano Spezia, Aug 13 2019 after Colin Barker
MAPLE
t:=0;
a:=[t]; M:=100;
for i from 1 to M do
if (t mod 2) = 0 then t:=t+i else t:=t-i; fi;
a:=[op(a), t]; od:
a;
PROG
(PARI) concat(0, Vec(x*(1 - 2*x - x^2) / ((1 - x)*(1 + x^2)^2) + O(x^80))) \\ Colin Barker, Aug 13 2019
CROSSREFS
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Aug 10 2019
STATUS
approved