login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309214
a(0)=0; thereafter a(n) = a(n-1)+n if a(n-1) even, otherwise a(n) = a(n-1)-n.
4
0, 1, -1, -4, 0, 5, -1, -8, 0, 9, -1, -12, 0, 13, -1, -16, 0, 17, -1, -20, 0, 21, -1, -24, 0, 25, -1, -28, 0, 29, -1, -32, 0, 33, -1, -36, 0, 37, -1, -40, 0, 41, -1, -44, 0, 45, -1, -48, 0, 49, -1, -52, 0, 53, -1, -56, 0, 57, -1, -60, 0, 61, -1, -64, 0, 65, -1, -68, 0, 69, -1, -72, 0, 73, -1
OFFSET
0,4
COMMENTS
A003816 and A309215 have the same terms except for signs.
FORMULA
a(4t)=0, a(4t+1)=4t+1, a(4t+2)=-1, a(4t+3)=-(4t+4).
From Colin Barker, Aug 13 2019: (Start)
G.f.: x*(1 - 2*x - x^2) / ((1 - x)*(1 + x^2)^2).
a(n) = a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) + a(n-5) for n>4.
a(n) = (-2 + (1+i)*(-i)^n + (1-i)*i^n + 2*i*((-i)^n-i^n)*n) / 4 where i=sqrt(-1).
(End)
E.g.f.: (1/2)*((1+2*x)*cos(x)-cosh(x)+sin(x)-sinh(x)). - Stefano Spezia, Aug 13 2019 after Colin Barker
MAPLE
t:=0;
a:=[t]; M:=100;
for i from 1 to M do
if (t mod 2) = 0 then t:=t+i else t:=t-i; fi;
a:=[op(a), t]; od:
a;
PROG
(PARI) concat(0, Vec(x*(1 - 2*x - x^2) / ((1 - x)*(1 + x^2)^2) + O(x^80))) \\ Colin Barker, Aug 13 2019
CROSSREFS
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Aug 10 2019
STATUS
approved