Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #54 Jan 09 2024 11:03:13
%S 1,0,0,1,1,0,5,23,18865
%N Number of main classes of extended self-orthogonal diagonal Latin squares of order n.
%C A self-orthogonal diagonal Latin square (SODLS) is a diagonal Latin square orthogonal to its transpose. An extended self-orthogonal diagonal Latin square (ESODLS) is a diagonal Latin square that has an orthogonal diagonal Latin square from the same main class. SODLS is a special case of ESODLS.
%C A333366(n) <= A329685(n) <= a(n) <= A330391(n). - _Eduard I. Vatutin_, Jun 07 2020
%C a(10) >= 33240. - _Eduard I. Vatutin_, Jul 09 2020
%H E. I. Vatutin, <a href="https://vk.com/wall162891802_924">Discussion about properties of diagonal Latin squares</a> (in Russian)
%H E. I. Vatutin, <a href="https://vk.com/wall162891802_1134">About the lower bound of number of ESODLS of order 10</a> (in RUssian).
%H E. I. Vatutin, <a href="http://evatutin.narod.ru/evatutin_esodls_1_to_8.zip">List of all main classes of extended self-orthogonal diagonal Latin squares of orders 1-8</a>.
%H E. I. Vatutin, <a href="http://evatutin.narod.ru/evatutin_esodls_9.zip">List of all main classes of extended self-orthogonal diagonal Latin squares of order 9</a>.
%H E. Vatutin and A. Belyshev, <a href="https://www.springerprofessional.de/en/enumerating-the-orthogonal-diagonal-latin-squares-of-small-order/18659992">Enumerating the Orthogonal Diagonal Latin Squares of Small Order for Different Types of Orthogonality</a>, Communications in Computer and Information Science, Vol. 1331, Springer, 2020, pp. 586-597.
%H Eduard I. Vatutin, Natalia N. Nikitina, and Maxim O. Manzuk, <a href="https://vk.com/wall162891802_1485">First results of an experiment on studying the properties of DLS of order 9 in the volunteer distributed computing projects Gerasim@Home and RakeSearch</a> (in Russian).
%H Eduard Vatutin and Oleg Zaikin, <a href="https://doi.org/10.1007/978-3-031-49435-2_2">Classification of Cells Mapping Schemes Related to Orthogonal Diagonal Latin Squares of Small Order</a>, Supercomputing, Russian Supercomputing Days (RuSCDays 2023) Rev. Selected Papers Part II, LCNS Vol. 14389, Springer, Cham, 21-34.
%H <a href="/index/La#Latin">Index entries for sequences related to Latin squares and rectangles</a>
%e The diagonal Latin square
%e 0 1 2 3 4 5 6 7 8 9
%e 1 2 0 4 5 7 9 8 6 3
%e 5 0 1 6 3 9 8 2 4 7
%e 9 3 5 8 2 1 7 4 0 6
%e 4 6 3 5 7 8 0 9 2 1
%e 8 4 6 9 1 3 2 5 7 0
%e 7 8 9 0 6 4 5 1 3 2
%e 2 9 4 7 8 0 3 6 1 5
%e 6 5 7 1 0 2 4 3 9 8
%e 3 7 8 2 9 6 1 0 5 4
%e has the orthogonal diagonal Latin square
%e 0 1 2 3 4 5 6 7 8 9
%e 3 5 9 8 6 2 0 1 4 7
%e 4 3 8 7 2 1 9 0 5 6
%e 6 9 3 4 8 0 1 2 7 5
%e 7 2 0 1 9 3 5 8 6 4
%e 2 0 1 5 7 6 4 9 3 8
%e 8 6 4 2 0 9 7 5 1 3
%e 1 7 6 0 5 4 8 3 9 2
%e 9 8 5 6 1 7 3 4 2 0
%e 5 4 7 9 3 8 2 6 0 1
%e from the same main class.
%Y Cf. A287761, A333366, A329685, A330391.
%K nonn,more,hard
%O 1,7
%A _Eduard I. Vatutin_, Aug 09 2019
%E a(9) added by _Eduard I. Vatutin_, Dec 08 2020