login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

(1/4) times the number of n-member subsets of [4n] whose elements sum to a multiple of n.
2

%I #11 Jul 18 2019 10:14:03

%S 1,3,19,115,776,5601,42288,328755,2615104,21191128,174303163,

%T 1451430673,12211799224,103655906784,886568153744,7633233556275,

%U 66105170315084,575445689884848,5032380942945322,44191451788247640,389514699013012242,3444925385161998521

%N (1/4) times the number of n-member subsets of [4n] whose elements sum to a multiple of n.

%C Also (1/3) times the number of n-member subsets of [4n-1] whose elements sum to a multiple of n.

%H Alois P. Heinz, <a href="/A309183/b309183.txt">Table of n, a(n) for n = 1..1000</a>

%F a(n) = 1/(4n) * Sum_{d|n} binomial(4d,d)*(-1)^(n+d)*phi(n/d).

%p with(numtheory):

%p a:= n-> add(binomial(4*d, d)*(-1)^(n+d)*

%p phi(n/d), d in divisors(n))/(4*n):

%p seq(a(n), n=1..25);

%Y Column k=4 of A309148.

%K nonn

%O 1,2

%A _Alois P. Heinz_, Jul 15 2019