The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A309180 Unsuspected numbers to check in the Collatz conjecture. 0
 61, 91, 205, 253, 325, 415, 433, 577, 637, 739, 901, 919, 991, 1063, 1171, 1225, 1333, 1387, 1549, 1663, 1711, 1837, 1873, 1891, 2035, 2125, 2197, 2287, 2359, 2449, 2521, 2683, 2791, 2845, 3007, 3169, 3187, 3277, 3331, 3349, 3439, 3493 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The sequence is constructed using the following steps: Start at 1, and color it blue. Go through the Collatz algorithm, highlight each number that is not in 'blue' in 'red' until you reach an already 'red' number or lower number that is 'blue'. Color the next uncolored number 'blue' and repeat. So starting at 1, 1 becomes blue, then 4 becomes red, 2 becomes red and move to next number. Next uncolored number is 3, so 3 becomes blue. Then 10 becomes red, 5 becomes red, 16 red, 8 red, and 4 is already red so done. Next uncolored number is 6, so 6 becomes blue, etc. For any number k the expected colors are: red if k (mod 18) is equal to 2, 4, 5, 8, 10, 11, 13, 14, 16, or 17. blue if k (mod 18) is equal to 0, 1, 3, 6, 7, 9, 12, or 15 The list here are the numbers that do not fit this pattern. Observation: For up to at least 180000 only numbers of the format k (mod 18) = 1 and k (mod 18) = 7 were not fitting the pattern, they were all red instead of blue. LINKS P. Stikker, C# code to visualize grid. P. Stikker, Excel VBA code to visualize grid. PROG (C#) // Unsuspected numbers to check in Collatz conjecture using System; namespace Collatz {     class Program {         static void Main() {             Console.Write("Enter until which number to check:");             int nMax = int.Parse(Console.ReadLine());             int[] values = new int[nMax + 1], colors = new int[nMax + 1];             for (int i = 1; i < nMax + 1; i++) {                 values[i] = i; colors[i] = 0;             }             for (int i = 1; i < nMax + 1; i++) {                 if (colors[i] == 0) {                     var myNum = i;                     do {                         myNum = (myNum % 2 == 0 ? myNum / 2 : myNum * 3 + 1);                         if (myNum > i) {                             if (myNum <= nMax) colors[myNum] = 1;                         }                         else myNum = 0;                     } while (myNum != 0);                 }             }             for (int i = 1; i < nMax+1; i++) {                 if (i % 18 == 0 || i % 18 == 1 || i % 18 == 3  || i % 18 == 6  ||                     i % 18 == 7 || i % 18 == 9 || i % 18 == 12 || i % 18 == 15) {                     if (colors[i]==1) Console.WriteLine(i);                 }                 else {                     if (colors[i] == 0) Console.WriteLine(i);                 }             }             Console.ReadKey();         }     } } (PARI) isokb(k) = (k==0) || (k==1) || (k==3) || (k==6) || (k==7) || (k==9) || (k==12) || (k==15); isokr(k) = (k==2) || (k==4) || (k==5) || (k==8) || (k==10) || (k==11) || (k==13) || (k==14) || (k==16) || (k==17); f(n) = if(n%2, 3*n+1, n/2); nocolor(n, vred, vblue) = !vecsearch(vred, n) && !vecsearch(vblue, n); chk(nn) = {vblue = []; vred = []; for (n=1, nn, if (nocolor(n, vred, vblue), ok = 1; vblue = vecsort(concat(vblue, n), , 8); ntodo = n; while (1, m = f(ntodo); if (vecsearch(vred, m), break); if ((m(!isokb(x%18)), vblue); vr = select(x->(!isokr(x%18)), vred); select(x->x<=nn, vecsort(concat(vr, vb))); } \\ Michel Marcus, Jul 17 2019 CROSSREFS Cf. A014682 (the Collatz function). So far the numbers are all of the form 6n + 1, so this would be a subset of A016921. Sequence in context: A103812 A047272 A123207 * A038856 A144970 A045562 Adjacent sequences:  A309177 A309178 A309179 * A309181 A309182 A309183 KEYWORD nonn AUTHOR Peter Stikker, Jul 15 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 23 15:23 EDT 2021. Contains 347618 sequences. (Running on oeis4.)