login
Least nonnegative integer k such that the rank of the elliptic curve y^2 = x^3 + (4*k^2 - 12*k - 3)*x^2 + 32*(-k+3)*x is n.
2

%I #9 Jul 15 2019 15:38:39

%S 0,5,17,181

%N Least nonnegative integer k such that the rank of the elliptic curve y^2 = x^3 + (4*k^2 - 12*k - 3)*x^2 + 32*(-k+3)*x is n.

%H Andrew Bremner, Allan Macleod, <a href="http://ami.ektf.hu/uploads/papers/finalpdf/AMI_43_from29to41.pdf">An unusual cubic representation problem</a>, Annales Mathematicae et Informaticae, 43(2014), pp.29-41. (See Section 8.)

%Y Cf. A309170.

%K nonn,more

%O 0,2

%A _Seiichi Manyama_, Jul 15 2019