%I #7 Jul 15 2019 15:40:38
%S 1,1,3,11,65,369,3139,24667,268449,2777345,34932131,432114891,
%T 6790407073,97969389361,1671204338595,28382893729499,557174580764609,
%U 10512263160373377,228918738980395459,4817409763554888715,115117419384636141441,2688602544800222293361
%N E.g.f. A(x) satisfies: A(x) = (1/(1 - x)) * Product_{k>=2} A(x^k)^(1/k).
%F E.g.f.: Product_{k>=1} 1/(1 - x^k)^(A074206(k)/k).
%t terms = 21; A[_] = 1; Do[A[x_] = 1/(1 - x) Product[A[x^k]^(1/k), {k, 2, terms}] + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x] Range[0, terms]!
%Y Cf. A074206, A129374, A307604, A309175.
%K nonn
%O 0,3
%A _Ilya Gutkovskiy_, Jul 15 2019