login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309160
Number of nonempty subsets of [n] whose elements have a prime average.
6
0, 1, 4, 6, 11, 15, 22, 40, 72, 118, 199, 355, 604, 920, 1306, 1906, 3281, 6985, 16446, 38034, 82490, 168076, 325935, 604213, 1068941, 1815745, 3038319, 5246725, 9796132, 19966752, 42918987, 92984247, 197027405, 402932711, 792381923, 1499918753, 2746078246
OFFSET
1,3
LINKS
FORMULA
a(n) < A051293(n).
EXAMPLE
a(3) = 4 because 4 of the subsets of [3], namely {2}, {3}, {1,3}, {1,2,3}, have prime averages.
MAPLE
b:= proc(n, s, c) option remember; `if`(n=0,
`if`(c>0 and denom(s)=1 and isprime(s), 1, 0),
b(n-1, s, c)+b(n-1, (s*c+n)/(c+1), c+1))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=1..40); # Alois P. Heinz, Jul 15 2019
MATHEMATICA
a[n_]:=Length[Select[Subsets[Range[n]], PrimeQ[Mean[#]]&]]; a/@Range[25]
PROG
(Python)
from sympy import isprime
from functools import lru_cache
def cond(s, c): q, r = divmod(s, c); return r == 0 and isprime(q)
@lru_cache(maxsize=None)
def b(n, s, c):
if n == 0: return int (c > 0 and cond(s, c))
return b(n-1, s, c) + b(n-1, s+n, c+1)
a = lambda n: b(n, 0, 0)
print([a(n) for n in range(1, 41)]) # Michael S. Branicky, Sep 25 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Ivan N. Ianakiev, Jul 15 2019
EXTENSIONS
a(26)-a(37) from Alois P. Heinz, Jul 15 2019
STATUS
approved