%I
%S 7,8,9,12,15,21,24,33,36,45,60,63,75,84,105,111,120,141,144,153,183,
%T 195,201,204,216,231,243,273,276,285,300,315,351,360,384,396,423,435,
%U 456,465,480,525,540,564,573,603,621,624,645,663,696,813,825,831,840
%N Numbers that can be written as the sum of two primes whose difference is also prime.
%C Numbers k such that k = p + q where p < q and p, q, and q  p are all prime.
%C Union of A054735 and (A006512 + 2).  _Robert Israel_, Jul 15 2019
%C From _Bernard Schott_, Jul 15 2019: (Start)
%C If k is even, then k is in A054735 with q  p = 2.
%C If k is odd, then k is in (A006512 + 2) with p = 2. (End)
%H Robert Israel, <a href="/A309152/b309152.txt">Table of n, a(n) for n = 1..10000</a>
%p P:= select(isprime, {seq(i,i=3..10000,2)}):
%p T:= P intersect map(`+`,P,2):
%p A1:= map(`+`,T, 2):
%p A2:= select(`<`, map(t > 2*t2, T), max(A1)):
%p sort(convert(A1 union A2,list); # _Robert Israel_, Jul 15 2019
%o (PARI) is(n) = my(x=n1, y=1); while(x >= y, if(ispseudoprime(x) && ispseudoprime(y), if(ispseudoprime(xy), return(1))); x; y++); 0 \\ _Felix FrÃ¶hlich_, Jul 14 2019
%Y Cf. A006512, A054735.
%K nonn
%O 1,1
%A _Wesley Ivan Hurt_, Jul 14 2019
