login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n + 2^4 * floor(n/2^4) + 3^4 * floor(n/3^4) + 4^4 * floor(n/4^4) + ...
4

%I #11 Aug 30 2021 03:12:21

%S 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,32,33,34,35,36,37,38,39,40,41,42,

%T 43,44,45,46,47,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,96,97,

%U 98,99,100,101,102,103,104,105,106,107,108,109,110,111,128,129,130,131,132,133,134,135,136,137,138,139

%N a(n) = n + 2^4 * floor(n/2^4) + 3^4 * floor(n/3^4) + 4^4 * floor(n/4^4) + ...

%C Partial sums of A300909.

%H Seiichi Manyama, <a href="/A309127/b309127.txt">Table of n, a(n) for n = 1..10000</a>

%F G.f.: (1/(1 - x)) * Sum_{k>=1} k^4 * x^(k^4)/(1 - x^(k^4)).

%F a(n) ~ zeta(5/4)*n^(5/4)/5 - n/2. - _Vaclav Kotesovec_, Aug 30 2021

%t Table[Sum[k^4 Floor[n/k^4], {k, 1, n}], {n, 1, 75}]

%t nmax = 75; CoefficientList[Series[1/(1 - x) Sum[k^4 x^(k^4)/(1 - x^(k^4)), {k, 1, Floor[nmax^(1/4)] + 1}], {x, 0, nmax}], x] // Rest

%o (PARI) a(n) = sum(k=1, n, k^4*(n\k^4)); \\ _Seiichi Manyama_, Aug 30 2021

%Y Cf. A013938, A024916, A300909, A309125, A309126.

%K nonn

%O 1,2

%A _Ilya Gutkovskiy_, Jul 13 2019