login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangular array T(m,n): number of sequences of n residues modulo m such that no nonempty subsequence sums to zero, for m>=1, n=0..m-1.
0

%I #6 Jul 13 2019 00:49:55

%S 1,1,1,1,2,2,1,3,6,2,1,4,12,16,4,1,5,20,44,10,2,1,6,30,96,90,36,6,1,7,

%T 42,174,240,84,28,4,1,8,56,288,690,336,168,48,6,1,9,72,440,1344,984,

%U 336,144,36,4,1,10,90,640,2590,3060,2100,1200,450,100,10

%N Triangular array T(m,n): number of sequences of n residues modulo m such that no nonempty subsequence sums to zero, for m>=1, n=0..m-1.

%C T(m,n)=0 if n>=m.

%H Brendan McKay et al., <a href="https://mathoverflow.net/q/119464">probability of zero subset sum</a>, MathOverflow, 2013.

%Y Columns: A000012 (n=0), A000027 (n=1), A002378 (n=2).

%Y Diagonals: A000010 (n=m-1), A062955 (n=m-2, starting with m=4).

%K nonn,tabl

%O 1,5

%A _Max Alekseyev_, Jul 12 2019