Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Jul 12 2019 02:38:55
%S 1,2,2,3,3,172,213,213,333,333,1228,1438,2152,3832,3832,3832,5792,
%T 22732,22732,37342,37342,37342,37342,37342,545408,629247,629247,
%U 629247,629247,629247,629247,629247,629247,1423713,8136838,8136838
%N a(n) is the least x such that x^2 mod prime(i), i=1..n, are all distinct.
%C There are more than n squares mod prime(n+1); therefore given a(n)=k we can choose a square r mod prime(n+1) that is not a(n)^2 mod prime(i) for i <= n, and using Chinese Remainder Theorem find x such that x == a(n) (mod prime(i)) for i <= n and x^2 == r (mod prime(n+1)), and then a(n+1) <= x. In particular a(n) exists for all n.
%e a(5) = 3 because 3^2 mod 2 = 1, 3^2 mod 3 = 0, 3^2 mod 5 = 4, 3^2 mod 7 = 2 and 3^2 mod 11 = 9 are all distinct, while this is not the case for 1^2 or 2^2 (e.g. 2^2 mod 5 = 2^2 mod 7 = 4).
%p P:= NULL:
%p v:= 1:
%p for n from 1 to 35 do
%p P:= P ,ithprime(n);
%p for k from v do
%p if nops({seq(k^2 mod P[i],i=1..n)}) = n then
%p v:= k;
%p A[n]:= k;
%p break
%p fi
%p od
%p od:
%p seq(A[n],n=1..35);
%o (PARI) isok(k, n) = my(v=vector(n, j, lift(Mod(k, j)^2))); #v == #Set(v);
%o a(n) = {my(k=1); while(!isok(k, n), k++); k;} \\ _Michel Marcus_, Jul 12 2019
%Y Cf. A279073.
%K nonn
%O 1,2
%A _Robert Israel_, Jul 11 2019