%I #14 Jul 10 2019 10:39:54
%S 1,2,11,362,7954
%N Least k such that the rank of the elliptic curve y^2 = x^3 - k^2 is n.
%o (PARI) {a(n) = my(k=1); while(ellanalyticrank(ellinit([0, 0, 0, 0, -k^2]))[1]<>n, k++); k}
%Y Cf. A031508, A060951, A194687, A309069.
%K nonn,more
%O 0,2
%A _Seiichi Manyama_, Jul 10 2019