Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Apr 22 2021 05:25:08
%S 0,1,3,7,13,24,42,77,122,206,332,578,889,1484,2338,4019,5960,9685,
%T 14887,25134,37225,60704,92919,156646,227302,364551,550329,917822,
%U 1337358,2158150,3258779,5441757,7800755,12412461,18546566,30708486,44327782,71090442
%N Total number of 0's in all (binary) max-heaps on n elements from the set {0,1}.
%C Also the total number of 1's in all (binary) min-heaps on n elements from the set {0,1}.
%H Alois P. Heinz, <a href="/A309051/b309051.txt">Table of n, a(n) for n = 0..5632</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Heap.html">Heap</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Binary_heap">Binary heap</a>
%F a(n) = Sum_{k=0..n} k * A309049(n,k).
%F a(n) = n * A091980(n+1) - A309052(n).
%e a(4) = 13 = 4+3+2+2+1+1+0, the total number of 0's in 0000, 1000, 1010, 1100, 1101, 1110, 1111.
%p b:= proc(n) option remember; `if`(n=0, 1, (g-> (f-> expand(
%p x^n+b(f)*b(n-1-f)))(min(g-1, n-g/2)))(2^ilog2(n)))
%p end:
%p a:= n-> subs(x=1, diff(b(n), x)):
%p seq(a(n), n=0..40);
%t b[n_][x_] := b[n][x] = If[n == 0, 1, Function[g, Function[f, Expand[x^n + b[f][x] b[n - 1 - f][x]]][Min[g - 1, n - g/2]]][2^(Length[IntegerDigits[ n, 2]] - 1)]];
%t a[n_] := b[n]'[1];
%t a /@ Range[0, 40] (* _Jean-François Alcover_, Apr 22 2021, after _Alois P. Heinz_ *)
%Y Cf. A056971, A091980, A309049, A309052.
%K nonn
%O 0,3
%A _Alois P. Heinz_, Jul 09 2019