login
Product minus sum of the two previous terms in the sequence, with a(1) = 2 and a(2) = 5.
1

%I #23 Sep 08 2022 08:46:21

%S 2,5,3,7,11,59,579,33523,19375715,649512684707,12584772018235630083,

%T 8173969059977170083865314925891,

%U 102867537103924486790122812065087346778963284622979

%N Product minus sum of the two previous terms in the sequence, with a(1) = 2 and a(2) = 5.

%H Christopher C. Capobianco, <a href="/A309006/b309006.txt">Table of n, a(n) for n = 1..18</a>

%F a(n) = a(n-1)*a(n-2) - (a(n-1)+a(n-2)), with a(1) = 2, a(2) = 5.

%e a(3) = a(1) * a(2) - (a(1) + a(2)) = 2 * 5 - (2 + 5) = 3.

%t RecurrenceTable[{x[n+1]==x[n]*x[n-1]-(x[n]+x[n-1]),x[1]==2,x[2]==5},x,{n,1,18}]

%o (Magma) I:=[2,5]; [n le 2 select I[n] else Self(n-1)*Self(n-2)-(Self(n-1)+Self(n-2)): n in [1..14]]; // _Vincenzo Librandi_, Jul 10 2019

%Y Cf. A173096, A268021.

%K nonn

%O 1,1

%A _Christopher C. Capobianco_, Jul 05 2019