Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #36 Sep 27 2019 19:44:33
%S 1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,2,1,2,1,1,1,2,1,1,1,2,1,1,1,1,1,1,
%T 1,1,1,1,1,2,1,1,1,2,2,1,1,2,1,2,1,2,1,2,1,2,1,1,1,3,1,1,2,1,1,1,1,2,
%U 1,1,1,2,1,1,2,2,1,1,1,2,1,1,1,3,1,1,1,2,1,3,1,2,1,1,1,2,1,2,2,1,1,1,1,2,1
%N The number of numbers with the same prime signature and set of distinct prime factors as n (including n).
%C The number of permutations of the exponents in the prime signature of n.
%C The number of terms in the n-th row of A111470.
%H Antti Karttunen, <a href="/A309004/b309004.txt">Table of n, a(n) for n = 1..75600</a>
%H <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>
%F a(n) = 1 if and only if n is a power of a squarefree number (A072774).
%F a(A088860(k)) = k.
%F a(A006939(k)) = A000142(k) = k!.
%F a(n) = A008480(A181819(n)). - _Antti Karttunen_, Sep 27 2019
%e a(12) = a(18) = 2 since 12 = 2^2 * 3 and 18 = 3^2 * 2 have the same prime signature, (2, 1), and the same set of distinct prime factors, {2, 3}.
%e a(60) = a(90) = a(150) = 3 since 60 = 2^2 * 3 * 5, 90 = 3^2 * 2 * 5, and 150 = 5^2 * 2 * 3 have the same prime signature, (2, 1, 1), and the same set of distinct prime factors, {2, 3, 5}.
%t a[n_] := Multinomial @@ Tally[FactorInteger[n][[;;,2]]][[;;,2]]; Array[a, 100]
%o (PARI)
%o A008480(n) = { my(es=factor(n)[, 2], s=vecsum(es)); s!/prod(i=1, #es, es[i]!); };
%o A181819(n) = factorback(apply(e->prime(e),(factor(n)[,2])));
%o A309004(n) = A008480(A181819(n)); \\ _Antti Karttunen_, Sep 27 2019
%Y Cf. A000142, A006939, A008480, A072774, A088860, A111470, A181819, A309308, A309309, A318762.
%K nonn
%O 1,12
%A _Amiram Eldar_, Jul 22 2019
%E More terms from _Antti Karttunen_, Sep 27 2019