login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A308960
Sum of the largest parts in the partitions of n into 7 squarefree parts.
8
0, 0, 0, 0, 0, 0, 0, 1, 2, 5, 5, 13, 19, 34, 40, 58, 77, 118, 139, 194, 232, 324, 385, 508, 576, 775, 883, 1133, 1274, 1630, 1821, 2262, 2525, 3093, 3450, 4153, 4563, 5494, 6067, 7155, 7842, 9283, 10177, 11860, 12928, 15051, 16466, 18969, 20543, 23705, 25820
OFFSET
0,9
FORMULA
a(n) = Sum_{o=1..floor(n/7)} Sum_{m=o..floor((n-o)/6)} Sum_{l=m..floor((n-m-o)/5)} Sum_{k=l..floor((n-l-m-o)/4)} Sum_{j=k..floor((n-k-l-m-o)/3} Sum_{i=j..floor((n-j-k-l-m-o)/2)} mu(o)^2 * mu(m)^2 * mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-j-k-l-m-o)^2 * (n-i-j-k-l-m-o), where mu is the Möbius function (A008683).
a(n) = A308953(n) - A308954(n) - A308955(n) - A308956(n) - A308957(n) - A308958(n) - A308959(n).
MATHEMATICA
Table[Sum[Sum[Sum[Sum[Sum[Sum[(n-i-j-k-l-m-o) * MoebiusMu[o]^2 * MoebiusMu[m]^2 * MoebiusMu[l]^2 * MoebiusMu[k]^2 * MoebiusMu[j]^2 * MoebiusMu[i]^2 * MoebiusMu[n - i - j - k - l - m - o]^2, {i, j, Floor[(n - j - k - l - m - o)/2]}], {j, k, Floor[(n - k - l - m - o)/3]}], {k, l, Floor[(n - l - m - o)/4]}], {l, m, Floor[(n - m - o)/5]}], {m, o, Floor[(n - o)/6]}], {o, Floor[n/7]}], {n, 0, 50}]
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jul 03 2019
STATUS
approved