Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Sep 24 2024 19:07:22
%S 0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,5,5,8,10,9,11,16,18,21,28,27,36,41,48,
%T 46,67,54,82,78,99,86,126,104,156,129,181,152,238,175,277,221,325,249,
%U 405,295,480,342,542,394,660,430,752,517,851,584,1005,643
%N Sum of the third largest parts in the partitions of n into 6 primes.
%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%F a(n) = Sum_{m=1..floor(n/6)} Sum_{l=m..floor((n-m)/5)} Sum_{k=l..floor((n-l-m)/4)} Sum_{j=k..floor((n-k-l-m)/3)} Sum_{i=j..floor((n-j-k-l-m)/2)} c(m) * c(l) * c(k) * c(j) * c(i) * c(n-i-j-k-l-m) * j, where c = A010051.
%F a(n) = A308919(n) - A308920(n) - A308921(n) - A308922(n) - A308924(n) - A308925(n).
%t Table[Sum[Sum[Sum[Sum[Sum[j*(PrimePi[i] - PrimePi[i - 1]) (PrimePi[j] - PrimePi[j - 1]) (PrimePi[k] - PrimePi[k - 1]) (PrimePi[l] - PrimePi[l - 1]) (PrimePi[m] - PrimePi[m - 1]) (PrimePi[n - i - j - k - l - m] - PrimePi[n - i - j - k - l - m - 1]), {i, j, Floor[(n - j - k - l - m)/2]}], {j, k, Floor[(n - k - l - m)/3]}], {k, l, Floor[(n - l - m)/4]}], {l, m, Floor[(n - m)/5]}], {m, Floor[n/6]}], {n, 0, 50}]
%t Table[Total[Select[IntegerPartitions[n,{6}],AllTrue[#,PrimeQ]&][[;;,3]]],{n,-0,70}] (* _Harvey P. Dale_, Sep 24 2024 *)
%Y Cf. A010051, A259196, A308919, A308920, A308921, A308922, A308924, A308925.
%K nonn
%O 0,13
%A _Wesley Ivan Hurt_, Jun 30 2019