login
A308901
Lexicographically earliest overlap-free binary sequence.
0
0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1
OFFSET
1
COMMENTS
Complement of A080813.
REFERENCES
M. Lothaire, Combinatorics on Words. Addison-Wesley, Reading, MA, 1983, p. 20 (definition of "overlap").
J. Shallit, A second course in formal languages and automata theory, Cambridge, 2009, pp. 37-39.
LINKS
J.-P. Allouche, J. Currie, and J. Shallit, Extremal infinite overlap-free binary words, Elect. J. Combin., 5:1 (1998), #R27.
J.-P. Allouche and Jeffrey Shallit, The Ubiquitous Prouhet-Thue-Morse Sequence, in C. Ding. T. Helleseth and H. Niederreiter, eds., Sequences and Their Applications: Proceedings of SETA '98, Springer-Verlag, 1999, pp. 1-16.
FORMULA
0,0,1,0,0,1 followed by a version of the Thue-Morse sequence A010060.
MATHEMATICA
Join[{0, 0, 1, 0, 0, 1}, 1-ThueMorse[Range[0, 200]]] (* Paolo Xausa, Dec 19 2023 *)
CROSSREFS
Cf. A010060, A080813, A282317 (cubefree analog).
Sequence in context: A288213 A308187 A289007 * A286804 A188071 A343219
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 16 2019
STATUS
approved