Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #42 Mar 07 2020 13:50:20
%S 0,0,1,2,3,0,1,2,2,3,0,1,4,5,0,1,2,3,2,3,0,1,1,4,5,2,5,0,1,4,0,1,2,3,
%T 4,2,3,0,1,5,1,4,5,2,0,5,0,1,4,3,3,6,7,0,1,0,1,2,3,4,5,2,3,0,1,6,7,1,
%U 4,5,2,0,8,5,0,1,4,3,6,3,7,6,0,1,4,4,2,9,5,7,10
%N Irregular array read by rows: row k (k>=1) contains k^2 numbers, formed by filling in a k X k square by rows so entries in all rows, columns, diagonals, antidiagonals are distinct, and then reading that square across rows.
%C The second row of the k X k square converges to A004443 as k increases.
%C When filling in the k X k square, always choose the smallest possible number. Each k X k square is uniquely determined.
%C Each k X k square read downwards by antidiagonals up to and including the main antidiagonal is A274528(1..k*(k+1)/2). - _I. V. Serov_, Jun 30 2019, following an argument by _Bernard Schott_.
%H I. V. Serov, <a href="/A308880/b308880.txt">Rows of first 32 squares, flattened</a> (There are 1^2+2^2+...+32^2 = 11440 entries.)
%H F. Michel Dekking, Jeffrey Shallit, and N. J. A. Sloane, <a href="https://www.combinatorics.org/ojs/index.php/eljc/article/view/v27i1p52/8039">Queens in exile: non-attacking queens on infinite chess boards</a>, Electronic J. Combin., 27:1 (2020), #P1.52.
%e The first eight squares are (here A=10, B=11, C=12):
%e 0
%e --------
%e 01
%e 23
%e --------
%e 012
%e 230
%e 145
%e --------
%e 0123
%e 2301
%e 1452
%e 5014
%e --------
%e 01234
%e 23015
%e 14520
%e 50143
%e 36701
%e --------
%e 012345
%e 230167
%e 145208
%e 501436
%e 376014
%e 42957A
%e --------
%e 0123456
%e 2301674
%e 1452083
%e 5014362
%e 3780145
%e 4265798
%e 9548237
%e --------
%e 01234567
%e 23016745
%e 14520836
%e 50143628
%e 37801459
%e 42675983
%e 9548237A
%e A836BC92
%e --------
%e Concatenating the rows of these squares gives the sequence.
%o (MATLAB)
%o A308880 = [];
%o A308881 = [];
%o for n = 1:oo;
%o M = [0:(n-1)
%o zeros(n-1,n-0)*NaN];
%o for i = 2:n; for j = 1:n; M = Mnext(M,n,i,j); end; end
%o A308880 = [A308880 reshape(M',1,n^2)];
%o A308881 = [A308881 reshape(M ,1,n^2)];
%o end
%o function [M] = Mnext(M,n,i,j);
%o row = M(i,1:j-1);
%o col = M(1:i-1,j);
%o dim = diag( M, j-i);
%o dia = diag(fliplr(M),n-i-j+1);
%o X = ([row col' dim' dia']);
%o for m = 0:length(X)-1; if isempty(find(X==m)); break; end; end;
%o M(i,j) = m;
%o end
%o % _I. V. Serov_, Jun 30 2019
%Y Cf. A004443, A308881, A274528.
%K nonn,tabf
%O 1,4
%A _N. J. A. Sloane_, Jun 29 2019