login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Sum of the largest parts in the partitions of n into 5 squarefree parts.
4

%I #11 Sep 17 2019 02:56:36

%S 0,0,0,0,0,1,2,5,5,13,19,32,35,52,66,96,104,147,177,240,263,356,392,

%T 514,543,712,763,972,1015,1271,1370,1652,1728,2084,2223,2623,2750,

%U 3275,3480,4087,4276,5011,5312,6141,6388,7443,7842,8987,9405,10753,11335

%N Sum of the largest parts in the partitions of n into 5 squarefree parts.

%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>

%F a(n) = Sum_{l=1..floor(n/5)} Sum_{k=l..floor((n-l)/4)} Sum_{j=k..floor((n-k-l)/3)} Sum_{i=j..floor((n-j-k-l)/2)} mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-j-k-l)^2 * (n-i-j-k-l), where mu is the Möbius function (A008683).

%F a(n) = A308839(n) - A308841(n) - A308842(n) - A308843(n) - A308844(n).

%e The partitions of n into 5 parts for n = 10, 11, ..

%e 1+1+1+1+10

%e 1+1+1+2+9

%e 1+1+1+3+8

%e 1+1+1+4+7

%e 1+1+1+5+6

%e 1+1+1+1+9 1+1+2+2+8

%e 1+1+1+2+8 1+1+2+3+7

%e 1+1+1+3+7 1+1+2+4+6

%e 1+1+1+4+6 1+1+2+5+5

%e 1+1+1+5+5 1+1+3+3+6

%e 1+1+1+1+8 1+1+2+2+7 1+1+3+4+5

%e 1+1+1+2+7 1+1+2+3+6 1+1+4+4+4

%e 1+1+1+3+6 1+1+2+4+5 1+2+2+2+7

%e 1+1+1+1+7 1+1+1+4+5 1+1+3+3+5 1+2+2+3+6

%e 1+1+1+2+6 1+1+2+2+6 1+1+3+4+4 1+2+2+4+5

%e 1+1+1+3+5 1+1+2+3+5 1+2+2+2+6 1+2+3+3+5

%e 1+1+1+1+6 1+1+1+4+4 1+1+2+4+4 1+2+2+3+5 1+2+3+4+4

%e 1+1+1+2+5 1+1+2+2+5 1+1+3+3+4 1+2+2+4+4 1+3+3+3+4

%e 1+1+1+3+4 1+1+2+3+4 1+2+2+2+5 1+2+3+3+4 2+2+2+2+6

%e 1+1+2+2+4 1+1+3+3+3 1+2+2+3+4 1+3+3+3+3 2+2+2+3+5

%e 1+1+2+3+3 1+2+2+2+4 1+2+3+3+3 2+2+2+2+5 2+2+2+4+4

%e 1+2+2+2+3 1+2+2+3+3 2+2+2+2+4 2+2+2+3+4 2+2+3+3+4

%e 2+2+2+2+2 2+2+2+2+3 2+2+2+3+3 2+2+3+3+3 2+3+3+3+3

%e --------------------------------------------------------------------------

%e n | 10 11 12 13 14 ...

%e --------------------------------------------------------------------------

%e a(n) | 19 32 35 52 66 ...

%e --------------------------------------------------------------------------

%e - _Wesley Ivan Hurt_, Sep 16 2019

%t Table[Sum[Sum[Sum[Sum[(n - i - j - k - l) * MoebiusMu[l]^2*MoebiusMu[k]^2*MoebiusMu[j]^2*MoebiusMu[i]^2*MoebiusMu[n - i - j - k - l]^2, {i, j, Floor[(n - j - k - l)/2]}], {j, k, Floor[(n - k - l)/3]}], {k, l, Floor[(n - l)/4]}], {l, Floor[n/5]}], {n, 0, 80}]

%Y Cf. A008683, A308839, A308840, A308841, A308842, A308843, A308844.

%K nonn

%O 0,7

%A _Wesley Ivan Hurt_, Jun 28 2019